항공기 기술기준
(Korean Airworthiness Standards)

Part 33

항공기 엔진에 대한 기술기준
Subpart A 일반

| 페이지 |
|-----------------|------------------|
| 33.1 | 적용범위 | 1 |
| 33.3 | 일반사항 | 1 |
| 33.4 | 감항성유지 지침서 | 1 |
| 33.5 | 엔진 장착 및 운용교범 | 1 |
| 33.7 | 엔진 정격 및 작동 제한사항 | 1 |
| 33.8 | 엔진 출력 및 추력 정격 선정 | 3 |

Subpart B 설계 및 구조; 일반

| 페이지 |
|-----------------|------------------|
| 33.11 | 적용범위 | 3 |
| 33.13 | [예비] | 3 |
| 33.14 | 시동/정지 후기응력 (저주기 피로) | 3 |
| 33.15 | 재료 | 3 |
| 33.17 | 화재방지 | 4 |
| 33.19 | 내구성 | 4 |
| 33.21 | 엔진 냉각 | 4 |
| 33.23 | 엔진 마운팅 체결장치와 구조 | 4 |
| 33.25 | 보기류 체결장치 | 4 |
| 33.27 | 터빈, 압축기, 펜, 터보파워기 로터 | 5 |
| 33.28 | 전기 및 전자식 엔진제어시스템 | 5 |
| 33.29 | 계기 연결장치 | 6 |

Subpart C 설계 및 구조; 왕복엔진

| 페이지 |
|-----------------|------------------|
| 33.31 | 적용범위 | 6 |
| 33.33 | 진동 | 6 |
| 33.35 | 연료와 흡입시스템 | 6 |
| 33.37 | 점화시스템 | 7 |
| 33.39 | 윤활시스템 | 7 |

Subpart D 불록시험; 왕복엔진

| 페이지 |
|-----------------|------------------|
| 33.41 | 적용범위 | 7 |
| 33.42 | 일반사항 | 7 |
| 33.43 | 진동시험 | 7 |
| 33.45 | 교정시험 | 8 |
KAS Part 33 항공기 엔진 기술기준

Subpart E 설계 및 구조 ; 터빈엔진

33.61 적용범위 ... 11
33.62 용력해석 ... 12
33.63 전동 ... 12
33.65 셋지 및 설숙 특성 ... 12
33.66 헬드공기시스템 ... 12
33.67 연료시스템 .. 12
33.68 흡입시스템 결빙 ... 13
33.69 정화시스템 .. 13
33.71 윤활시스템 .. 13
33.72 유압작동시스템 ... 15
33.73 출력 또는 추력 응답 ... 15
33.74 정지후 연속회전 ... 15
33.75 안전성해석 .. 15
33.76 조류 흡입 ... 16
33.77 외부 물체 흡입 - 열음 ... 19
33.78 강우 및 우박 흡입 .. 20
33.79 연료연소식 추력증강장치 ... 21

Subpart F 흡경시험 ; 터빈엔진

33.81 적용범위 ... 21
33.82 일반사항 ... 21
33.83 전동시험 ... 21
33.85 교정시험 ... 22
33.87 내구성시험 .. 23
33.88 엔진파열시험 ... 28
33.89 작동시험 ... 28
33.90 초기 설비검사 .. 29
33.91 엔진 구성품 시험 ... 29
33.92 로터 잠김 시험 ... 29
33.93 분해검사 ... 29

제정: 1993.08.24 33 - ii 개정: 2013.04.15
33.94 블레이드 내포 및 로터 불균형 시험 ... 30
33.95 엔진-프로펠러 시스템 시험 ... 35
33.96 보조동력장치 모드에서 엔진 시험 .. 31
33.97 역추력장치 ... 31
33.99 블록시험 일반사항 ... 31

부록 A. 감항성유지 지침서 .. 33

부록 B. 대기 중의 강우 및 우박 농도에 대한 인증기준 ... 35
Subpart A 일반

33.1 적용범위
(a) 이 기준은 항공법 제15조 제5항의 규정에 의한 항공기 엔진에 대한 기술상의 기준으로서
항공기 엔진의 형식증명 등과 이에 대한 변경을 위한 기준을 규정한다.
(b) 항공법 제17조, 제17조의2, 제19조, 제20조의2의 규정에 의하여 항공기 엔진에 대한 증명
또는 증명의 변경 등을 신청하는 자는 이 기준과 KAS Part 34의 해당 요구조건에 적합함
을 입증하여야 한다.

33.3 일반사항
신청자는 해당 항공기 엔진이 이 기준의 해당 요구조건에 충족함을 입증하여야 한다.

33.4 감항성유지 지침서
신청자는 이 기준의 부록 A에 의거하여 감항성유지 지침서를 작성하여 국토교통부장관에게
제출하여야 한다. 형식증명 발급 시 항공기 엔진에 대한 감항성유지지침서의 작성이 완료되지
않을 수 있다. 다만, 이 경우에는 신청자가 해당 엔진을 장착한 초도 항공기의 인도 또는 해당
엔진을 장착한 항공기에 대한 표준 감항증명의 발급 이전까지 감항성유지지침서의 작성 완료
을 보장할 수 있는 체계를 가지고 있어야 한다.

33.5 엔진 장착 및 운용교범
신청자는 형식증명의 발급 전에 엔진 장착 및 운용 지침서 또는 교범을 준비하여 국토교통부
장관에게 제출하여야 하고, 엔진 인도 시점에는 승인된 지침서 또는 교범을 구매자에게 제공
하여야 한다. 지침서 또는 교범에는 최소한 다음 항목이 포함되어야 한다.
(a) 장착 지침서
(1) 엔진 마운팅 체결부위의 위치, 항공기에 엔진을 체결하는 방법, 그리고 마운팅 체결장치와
관련 구조물의 최대 허용 하중
(2) 보기류, 파이프, 와이어, 케이블, 덕트, 카울링 등을 엔진에 체결하는데 필요한 연결장치의
위치와 이에 대한 설명
(3) 엔진의 전체 차수가 기재된 외형 도면
(b) 운용 지침서
(1) 국토교통부장관이 설정한 작동 제한사항
(2) 출력 또는 추력 경과 관리용데기일 때의 보정절차
(3) 정상 및 극한 대기조건 하에서 다음과 같은 작동에 필요한 권고 절차
 (i) 시동
 (ii) 지상 작동
 (iii) 비행중 작동

33.7 엔진 경과 및 작동 제한사항
(a) 국토교통부장관은 엔진의 경과 작동 제한사항을 설정하고, 이를 엔진 형식증명 자료집
(TCDS, Type Certificate Data Sheet)에 기재하여야 한다. 형식증명 자료집에는 다음과
작동 조건 및 관련 정보에 따른 경격과 제한사항, 그리고 엔진의 안전한 작동에 필요한 모든 정보가 포함되어야 한다.

(b) 항공엔진의 경격과 작동 제한은 다음 사항과 관련하여 설정하여야 한다.

(1) 임계 압력고도와 해면 압력고도에서 다음의 출력을 낼 수 있는 마력 또는 토크, 회전수, 홀기 다기관 압력, 그리고 시간
 (i) 경격최대연속출력 (파급기의 작동 또는 미작동 모드 하에서)
 (ii) 경격이륙출력 (파급기의 작동 또는 미작동 모드 하에서)

(2) 연료 등급 또는 규격
(3) 오일 등급 또는 규격
(4) 다음의 온도
 (i) 실린더
 (ii) 유압시스템 입구에서의 오일
 (iii) 터보파급기 터빈휠 입구의 가스

(5) 다음의 압력
 (i) 연료시스템 입구에서의 연료
 (ii) 주오일 도관에서의 오일

(6) 보급류 구동 회전력과 오버행 모멘트

(7) 구성품 사용 수명
(8) 터보파급기 터빈휠 회전수

(c) 터빈엔진의 경격과 작동 제한사항은 다음 사항과 관련하여 설정하여야 한다.

(1) 다음 조건에서의 마력, 회전력 또는 추력, 회전수, 가스온도, 그리고 시간
 (i) 경격최대연속출력 또는 추력 (추력증가장치를 작동할 때)
 (ii) 경격최대연속출력 또는 추력 (추력증가장치를 작동하지 않을 때)
 (iii) 경격이륙출력 또는 추력 (추력증가장치를 작동할 때)
 (iv) 경격이륙출력 또는 추력 (추력증가장치를 작동하지 않을 때)
 (v) 경격 3분 1개 엔진 부작동(OEI) 출력
 (vi) 경격 2 ½분 1개 엔진 부작동(OEI) 출력
 (vii) 경격 연속 1개 엔진 부작동(OEI) 출력
 (viii) 경격 2분 1개 엔진 부작동(OEI) 출력
 (ix) 경격 30조 1개 엔진 부작동(OEI) 출력
 (x) 보조동력장치 작동 모드

(2) 연료 명칭 또는 규격
(3) 오일 등급 또는 규격
(4) 유압유 규격
(5) 다음의 온도
 (i) 신청자가 정한 위치의 오일
 (ii) 초음속 항공기용 엔진 흡입구에서의 흡입공기. 단, 정상상태 작동과 과도상태에서 허용되는 초과온도 및 시간을 포함한다.
 (iii) 초음속 항공기용 엔진의 유압유
 (iv) 신청자가 정한 위치의 연료
 (v) 신청자가 정한 경우에, 엔진의 외부 표면

(6) 다음의 압력
33.8 엔진 출력 및 추력 정격 선정
(a) 신청자는 증명을 신청할 엔진 출력 및 추력 정격을 선정하여야 한다.
(b) 엔진의 정격은 동일한 형식의 모든 엔진이 그 정격을 결정하기 위한 조건하에서 예상되는 최소 출력 또는 추력으로 선정되어야 한다.

33.11 적용범위
본 장은 항공기용 왕복엔진과 터빈엔진의 일반적인 설계 및 구조 요구조건에 대해 규정한다.

33.13 [예비]

33.14 시동/정지 추력 운용 (저추기 피로)
부품의 피복이 항공기에 위험을 초래할 수 있는 로터 구조 부품(디스크, 스페이서, 허브, 압축기 및 터빈의 측 등)에 대해서는, 국토교통부장관이 승인한 절차에 의해서, 최대허용 시동/정지 운용 주기를 규정하는 작동 제한조건을 설정하여야 한다. 로터 구조 부품에 있어서는, 시동/정지 운용 주기를 비행 주기로 조정하여 모든 엔진의 실제 운용과 동등한 주기로 표시한다. 이것은 엔진의 시동, 최대정격출력 또는 추력까지의 가속, 감속, 그리고 정지를 포함한다. 엔진이 최대정격출력 또는 추력으로 작동할 때와 정지 후에 로터 구조 부품이 안정화된 온도에 도달할 수 있도록 각 주기를 설정하여야 한다. 다만, 로터 구조 부품이 온도 안정화 없이도 동일한 운용범위를 갖게 되는 경우에도 예외로 한다.

33.15 제표
엔진에 사용되는 재료의 적합성과 내구성은 다음의 요구조건을 충족하여야 한다.
(a) 경험이나 시험에 근거하여 설정되어야 한다.
(b) 설계 자료에 명시된 강도와 기타의 특성을 입증할 수 있는 공인된 규격(산업규격 또는 군사규격 등)에 합치하여야 한다.

33.17 화재방지
(a) 엔진의 설계와 구성 그리고 사용되는 재료는 화재의 발생 및 확산의 가능성을 최소화할 수 있는 것이어야 한다. 또한, 터빈엔진의 설계와 구조는 구조물의 파손, 파열, 또는 기타의 위험한 상태를 유발할 수 있는 내부 화재의 발생 가능성을 최소화할 수 있도록 해야 한다.
(b) 본 절의 (c), (d), (e)항에서 규정한 사항을 제외하고, 내부에 가연성 유체가 차 있거나 이를 전달하는 외부관, 좌익, 그리고 기타의 구성품은 내화성이 있어야 한다. 구성품은 누설된 가연성 유체가 발화될 경우에도 안전하도록 보호되거나 보호될 수 있는 위치에 설치되어야 한다.
(c) 엔진의 일부 부품으로서 엔진에 설치되는 가연성 유체 테크와 그 지지대는, 화재로 인한 비불연성 부품의 손상이 가연성 유체의 누출이나 흡열을 유발하지 않음을 입증하지 않으면, 불연성이 있거나 불연 판재로 둘러싸여야 한다. 터빈엔진에 사용되는 용량 25큐트 이하의 통합형 오일셀프의 경우에는 불연성이 있거나 불연 판재로 둘러싸는 필요가 없다.
(d) 초음속 항공기에 사용되는 터빈엔진의 경우에는, 가연성 유체를 운반하거나 이를 저장하고 있는 모든 외부 구성품은 불연성이 있어야 한다.
(e) 불필요한 가연성 유체와 증기가 외부로 배출 및 배기 시켜서 구성품 내부에 축적되는 것을 방지하여야 한다.

33.19 내구성
(a) 엔진의 설계와 구조는 창정비 주기 도래 전에 엔진이 불안전한 상태로 전진되는 것을 최소 화할 수 있는 방식이어야 한다. 압축기와 터빈 로터 케이스의 설계는 로터 블레이드의 파손으로 인한 손상을 내포할 수 있어야 한다. 로터 블레이드가 파손되어 그 파편이 압축기 및 터빈 케이스 밑으로 비산되는 에너지 수준과 궤적을 정의하여야 한다.
(b) 엔진 형식 설계의 일부인 프로펠러 블레이드 파치 제어시스템의 각 구성품은 항공기 기술기준 35.42항의 요구조건을 충족하여야 한다.

33.21 엔진 냉각
엔진의 설계와 구성은 항공기 운용이 예상되는 조건 하에서 필요한 냉각을 할 수 있도록 하여야 한다.

33.23 엔진 마운팅 채결장치와 구조
(a) 엔진 마운팅 채결장치와 관련 구조물에 대한 최대허용 한계 및 극한하중을 규정하여야 한다.
(b) 엔진 마운팅 채결장치와 관련 구조물은 다음과 같은 하중에 견딜 수 있어야 한다.
 (1) 영구 변형이 일어나지 않도록 규정된 한계하중
 (2) 영구 변형이 생길 수 있지만, 파손을 일으키지 않도록 규정된 극한하중

33.25 보기류 채결장치
엔진은 보기류 구동장치 및 마운팅 채결장치에 하중이 걸린 상태에서 적절하게 작동되어야 한다. 각 엔진 보기류 구동장치 및 마운팅 채결장치는 엔진 내부의 오염 또는 내부로부터 허용량 이상의 누설을 방지할 수 있도록 밀봉 기구를 구비하여야 한다.
외부 구동 스플라인 또는 커플링에 엔진 오일에 의한 윤활이 필요한 구동장치 및 마운팅 체결 장치는 허용량 이상의 오일 손실과 외부로부터의 오염을 방지하기 위한 밀봉 기구를 구비하여야 한다. 엔진의 작동에 필요한 각 보기류를 검사, 조정, 또는 장탈하는데 용이하도록 엔진을 설계하여야 한다.

33.27 터빈, 압축기, 펜, 터보과급기 로터
(a) 터빈, 압축기, 펜, 그리고 터보과급기의 로터는 본 절의 (c)항에 규정된 시험조건에서 점탈 수 있는 충분한 강도를 가져야 한다.
(b) 엔진 제어장치, 시스템, 계기의 설계와 기능은 터빈, 압축기, 펜, 터보과급기 로터의 구조적 건전성에 영향을 미치는 엔진의 작동 제한사항을 운용 중에 초과하지 않는다는 것을 타당한 방법으로 보증하여야 한다.
(c) 엔진 또는 터보과급기의 일체형 드럼 로터와 원심형 압축기를 포함하여 각 터빈, 압축기, 그리고 펜에 대하여 응력해석 또는 기타의 적합한 방법으로 가장 치명적인 응력을 받는 로터 구성품(블레이드 제외)을 결정하고, 이에 대하여 5분 동안 다음의 조건에서 시험하여야 한다.

(1) 본 절의 (c)(2)(iv)항에 규정된 조건을 제외한 최대 작동 온도에서 시험한다.
(2) 다음 중 적용 가능한 최고 속도에서 시험한다.
 (i) 블레이드 또는 블레이드에 해당하는 무게를 장착한 상태로 리그에서 시험하는 경우에
 는 최대허용회전수의 120%에서 시험.
 (ii) 엔진에 장착하여 시험하는 경우에는 최대허용회전수의 115%에서 시험.
 (iii) 특수한 연소기 리그로부터 공급되는 고온의 가스에 의해 구동되는 터보과급기에 장착하여 시험하는 경우에는 최대허용회전수의 115%에서 시험.
 (iv) 적은 상태에서 회전시키는 경우, 최대작동온도와 최대허용회전수에서 받는 응력과 동등한 응력이 작용하는 회전수의 120%에서 시험.
 (v) 엔진에 설치로 장착한 방법과 같은 조건에서 가장 치명적인 구성품이나 시스템이 파손을 초래할 수 있는 최고 속도의 105%에서 시험.
 (vi) 일상작업 비행 전 점검 또는 정상 비행 작동 중에는 일반적으로 탐지되지 않는 구성품 또는 시스템의 파손과 결합되어 나타나는, 엔진에 실제 장착하는 방법과 같은 조건에서 구성품이나 시스템의 파손을 초래할 수 있는 최고 속도에서 시험.

시험 후에 각 로터는 과속 조건 하에서 스핀인 치수 제한값 범위 이내에 있어야 하고 관열이 없어야 한다.

33.28 전기 및 전자식 엔진제어시스템
정상적인 작동상태에서 전기 및 전자식으로 작동되는 모든 제어시스템은 다음의 요구조건을 충족하여야 한다.
(a) 33.5절에 의거한 엔진 지침 및 메뉴얼에 규정된 바와 같이 제어시스템의 기술적인 내용, 정상 작동 상태와 고장 상태에서 제어되는 가용 출력 또는 추력의 비율(%), 그리고 기타의 제어 기능에 대한 제어 범위를 명시하여야 한다.
(b) 항공기에서 공급되는 동력 또는 데이터가 차단되어도 이로 인하여 엔진의 출력이나 추력이 비정상적으로 변환되지 않거나, 엔진의 안전한 작동을 유지할 수 있도록 설계 및 구성되어야 한다.
(c) 단일 고장이나 기능장에, 또는 제어시스템에 사용되는 전기 및 전자식 구성품의 고장 확률
조합으로 인하여 불안전한 상태가 되지 않도록 설계 및 구성되어야 한다.
(d) 지점 및 매뉴얼에 규정된 바와 같이 낙뢰에 의한 과도상태 조건을 포함하는 환경 제한사항을 명시하여야 한다.
(e) 모든 관련 소프트웨어는 엔진의 출력 또는 추력이 현저히 저하되거나 기타의 불안전한 상태를 유발할 수 있는 오류를 방지할 수 있도록 설계되고 실행되어야 한다. 그리고 소프트웨어 설계 및 실행에 사용되는 방법은 국토교통부장관에 의해 승인된 것이어야 한다.

33.29 계기 연결장치
(a) 계기를 잘못 연결하는 것을 방지할 수 있도록 구성되어 있지 않은 경우에는 항공기에 대한 기술기준에 따라서 요구되거나 엄의의 엔진 제한사항을 준수하여 엔진을 작동하는데 필요한 동력장치 계기의 각 연결장치에는 그에 대응하는 계기를 식별하기 위한 표시가 있어야 한다.
(b) 터보세트엔진에는 로터시스템의 불균형을 지시하기 위하여 항공기의 지시시스템에 필요한 연결장치가 구비되어야 한다.
(c) 30초 1개 엔진 부작동(OEI) 정격과 2분 1개 엔진 부작동(OEI) 정격을 갖는 회전익 항공기용 터빈엔진은 다음과 같은 기능을 할 수 있는 기구를 구비하여야 한다.
 (1) 엔진이 30초 1개 엔진 부작동(OEI)과 2분 1개 엔진 부작동(OEI) 출력 수준에 있을 때, 이 상황이 시작되는 시점, 그리고 제한시간의 만료를 조종사에게 경보할 수 있는 기구.
 (2) 각 정격 출력에 도달되었는지를 명확하게 판단할 수 있는 기구.
 (3) 각 정격에서 출력의 사용과 지속시간을 자동으로 기록할 수 있는 장치.

Subpart C 설계 및 구조: 왕복엔진

33.31 적용범위
본 장은 항공기용 왕복엔진에 대한 추가적인 설계 및 구조 요구조건을 규정한다.

33.33 진동
엔진은 크랭크축 회전속도와 엔진 출력의 정상 작동범위에서 기능을 발휘하도록 설계 및 구성되어야 한다. 이 때 진동으로 인하여 엔진의 과도한 응력이 작용되지 않고 항공기 구조물에 과도한 진동 하중이 전달되지 않아야 한다.

33.35 연료와 흡입시스템
(a) 엔진의 연료시스템은 모든 비행 및 대기조건 하에서 엔진의 작동범위 전체에 걸쳐서 적정한 연료 혼합기를 설립하는데 공급할 수 있도록 설계 및 구성되어야 한다.
(b) 연소를 목적으로 공기 또는 공기와 혼합된 연료가 흐르는 엔진의 흡입통로는 빙결의 위험을 최소화하도록 설계 및 구성되어야 한다. 엔진은 방빙 기구를 사용할 수 있도록 설계 및 구성되어야 한다.
(c) 연료에 있는 이물질로부터 엔진의 연료시스템을 보호하는데 필요한 연료여과 형식과 등급이 규정되어야 한다. 인증신청자는 규정된 여과기를 통과하는 이물질이 엔진의 연료시스템 기능에 치명적인 손상을 입히지 않음을 입증하여야 한다.
(d) 엔진이 장착될 항공기의 지상 정적 자세 조건에서 엔진이 놓일 수 있는 자세로 인증신청

제정: 1993.08.24 33 - 6 개정: 2013.04.15
자가 설정한 모든 자세에서 연료와 공기 혼합기가 흐르는 흡입시스템의 각 통로는 실린더에서의 액체 폐색을 방지하기 위하여 자동배출 기능이 있어야 한다.

(e) (연료가 아닌) 유체 분사 시스템 및 제어장치를 사용하는 엔진의 경우에, 인증신청자는 분사 유체의 흐름이 적정하게 제어되는 것을 입증하여야 한다.

33.37 점화시스템
스파크 점화방식의 모든 엔진은 각각의 실린더에 최소한 두 개의 스파크 플러그 그리고 서로 다른 전기 에너지원을 갖는 두 개의 분리된 전기회로로 이루어지는 이중점화시스템을 갖고 있어야 한다. 이에 동등한 비행 신뢰도를 갖는 점화시스템을 구비하여야 한다.

33.39 윤활시스템
(a) 엔진의 윤활시스템은 항공기가 운용될 수 있는 모든 비행조건 및 대기조건에서 엔진이 적정하게 기능을 발휘할 수 있도록 설계 및 구성되어야 한다. 습식 섬프 방식의 엔진에 있어서는 최대 윤활유 용량의 절반만이 엔진에 보급되어 있을 때에도 본 요구조건을 만족하여야 한다.

(b) 엔진의 윤활시스템은 오일을 냉각시키는 기구를 설치할 수 있도록 설계 및 구성되어야 한다.

(c) 크랭크케이스는 과도한 압력으로 인한 오일의 누출을 방지하기 위해서 대기 중으로 배기될 수 있어야 한다.

Subpart D 불록시험; 왕복엔진

33.41 적용범위
본 장은 항공기용 왕복엔진의 불록시험과 검사에 대해 규정한다.

33.42 일반사항
엔진에 장착하지 않은 상태에서 조절장치 및 기능 특성이 설정될 수 있는 각 구성품은, 본 장에 의거 요구되는 각 내구성시험 전에 해당 조절장치 및 기능 특성이 설정되고 기록되어야 한다.

33.43 진동시험
(a) 각 엔진은 공회전속도에서 최대연속정격속도의 110% 또는 최대이륙정격속도의 103% 중에 높은 속도까지, 정상상태와 과도조건 하에서, 크랭크축 속도 및 엔진 출력 범위에 걸쳐 크랭크축과 프로펠러축 또는 기타 출력축의 비틀림과 굽힘 진동 특성을 설정하기 위한 진동 관측을 받아야 한다. 항공기 엔진에 대한 진동관측은 내구성시험에 사용된 것과 동일한 형상의 프로펠러 형식을 사용하여 수행되어야 하며, 다른 엔진의 경우에는 내구성시험에서 사용되는 것과 동일한 형상의 부하장치 형식을 사용하여 수행되어야 한다.

(b) 크랭크축과 프로펠러축 또는 기타 출력축의 비틀림과 굽힘 진동응력은 축을 제작하는 재료의 내구성 한계응력을 초과하지 않아야 한다. 축의 최대응력이 내구성 한계 이내임을 증명하기 위해서는, 진동주파수와 진폭이 측정되어야 한다. 최대 진폭이 내구성 한계 이하의 응력을 발생한다는 것을 입증하지 않으면, 실장 축의 경우에는 피로파괴 없이 1,000만번의 응력반복에 견딜 때까지, 그리고 철강 이외의 재료로 제작된 축의 경
우에는 재료의 내구성 한계응력 내에서 피로가 일어나지 않음이 입증될 때까지, 최대진폭을 발생하는 조건에서 엔진이 작동되어야 한다.

(c) 각 보기류 구동장치와 마운팅 체결장치에는 항공기가 운용될 때로 사용되는 보기류에 의해서 부착되는 하중을 가해져야 하고, 인증신청자는 해당 보기류 구동부 또는 체결부에 하중을 설정하여야 한다.

(d) 본 절의 (a)항에 기술된 진동관측은 엔진이 정상적인 상태에서도 안전하게 작동될 수 있는 조건을 설정하기 위하여 전동으로 인한 역효과를 가장 크게 나타내는 절단력에 반복 수행되어야 한다. 그러나, 이 진동관측의 경우에 엔진의 속도 범위는 공회전속도에서 최대이륙전속도까지만 필요하고, 본 절의 (b)항에 대한 적합성 입증은 요구되지 않는다.

33.45 교정시험

(a) 각 엔진은 출력특성과 33.49항에 규정된 내구성시험 조건의 설정에 필요한 교정시험을 받아야 한다. 출력특성 교정시험의 결과는 크랭크축 회전속도, 다기관 압력, 연료/공기 혼합 조정, 고도로 나타내는 전체 작동범위에서 엔진 특성을 설정하기 위한 기준이 된다. 출력정격은 엔진의 기능에 필수적인 보기류만을 장착한 상태에서 표준 대기조건으로 한다.

(b) 해면고도 조건에서의 출력점검은 내구성시험을 마친 엔진으로 수행되어야 한다. 내구성시험 중에 일어나는 출력특성의 모든 변화는 기록되어야 한다. 내구성시험의 마지막 단계에서 측정된 데이터는 본 항의 요구조건에 대한 적합성을 입증하는데 사용될 수 있다.

33.47 디토네이션시험

각 엔진은 설계된 작동조건의 범위 내에서 디토네이션 현상이 발생하지 않으면서 주어진 기능을 발휘할 수 있는지를 입증하기 위하여 시험을 수행하여야 한다.

33.49 내구성시험

(a) 일반, 각 엔진은 총 150시간의 (본 절 (e)(1)(ii)항에 규정된 것은 제외) 내구성시험을 받아야 하며, 이 내구시험은 엔진의 형식과 예측된 사용에 따라, 본 절 (b)내지 (e)항에 규정된 일련의 작동조건 하나로 구성된다. 시험의 특징 엔진의 경우, 작동절차는 국토교통부장관이 적합하다고 판정한 순서에 의해 행해져야 한다. 내구성시험 중 엔진출력과 크랭크축 회전속도는 정격치의 ±3% 이내 이어야 한다. 정격이륙출력과 정격이륙연속출력에서 최소 35시간 동안, 하나의 실린더는 한계온도이상에서 운용해야 하며, 나머지 실린더는 한계온도 이하 50°F 이상 온도에서 운용해야 하고 오일 입구온도는 한계온도의 ±10°F이내에서 유지되어야 한다. 프로펠라 속도가 정착된 엔진은 내구성시험을 위해 본 절에서 지정된 작동조건에 각 작동조건에서 엔진이 전이하도록 설계된 최대주력에 부가하는 프로펠러를 장착하여야 한다. 각 보기류 구동장치와 마운팅 체결장치는 장착되어야 한다. 구동장치 또는 체결부에서 신청자가 규정한 한계하중으로 항공기가 운용될 때 각 보기류 하중이 각 보기류 구동장치와 마운팅 체결 장치에 가해져야 한다.

(b) 비과급기 엔진과 기어구동 1단 속도 과급기 장착 엔진과 과급기 비장착 엔진과 기어 구동 정속 과급기 장착 엔진의 신청자는 다음의 작동절차를 수행하여야 한다.

(1) 이륙속도에서 정격이륙출력으로 5분 동안, 그리고 최대강조순항출력 최대권고 순항출력으로 5분 동안의 교변 주기로 구성된 30시간 작동
(2) 최대연속속도에서 정격최대연속출력으로 1시간 동안, 그리고 91% 최대연속속도에서 75% 정격최대연속출력으로 30분 동안의 교변주기로 구성된 20시간 작동
(3) 최대연속속도에서 정격최대연속출력으로 1시간 동안, 그리고 89% 최대연속속도에서 70% 정격최대연속출력으로 30분 동안의 교변주기로 구성된 20시간 작동
(4) 최대연속속도에서 정격최대연속출력으로 1시간 동안, 그리고 87% 최대연속속도에서 65% 정격최대연속출력으로 30분 동안의 교변주기로 구성된 20시간 작동
(5) 최대연속속도에서 정격최대연속출력으로 1시간 동안, 그리고 84.5% 최대연속속도에서 60% 정격최대연속출력으로 30분 동안의 교변주기로 구성된 20시간 작동
(6) 최대연속속도에서 정격최대연속출력으로 1시간 동안, 그리고 79.5% 최대연속속도에서 50% 정격최대연속출력으로 30분 동안의 교변주기로 구성된 20시간 작동
(7) 최대연속속도에서 정격최대연속출력으로 2시간 동안, 그리고 최대경제순항출력 또는 최대권고순항출력으로 2시간 동안의 교변주기로 구성된 20시간 작동
(c) 기어구동 이단속도 파급기를 장착한 엔진, 기어구동 이단속도 파급기를 장착한 엔진의 신청자는 다음의 작동절차를 수행하여야 한다.
(1) 이륙속도의 정격이륙출력에서 저기어비로 5분 동안, 그리고 최대경제순항출력 또는 최대권고순항출력으로 5분 동안의 교변주기로 구성된 30시간 작동. 고기어비에서 이륙속도 동급인 경우, 30시간 동안에 15시간 동안은 이륙각계고도 흡기관압력과 이륙속도에서의 마력으로 5분 동안, 그리고 89% 고비율 최대연속속도 및 70% 고비율 정격최대연속출력으로 5분 동안의 교변주기로 구성된 고기어비에서 수행되어야 한다.
(2) 저기어비 상태에서, 최대연속속도에서 정격최대연속출력으로 1시간 동안, 그리고 91% 최대연속속도에서 75% 정격최대연속출력으로 1시간 동안의 교변주기로 구성된 15시간 작동
(3) 저기어비 상태로, 최대연속속도에서 정격최대연속출력으로 1시간 동안, 그리고 89% 최대연속속도에서 70% 정격최대연속출력으로 1시간 동안의 교변주기로 구성된 15시간 작동
(4) 고기어비 상태에서, 최대연속속도에서 정격최대연속출력으로 30시간 작동
(5) 각 파급기 기어비에서 5분 동안의 교변주기로 구성된 5시간 작동. 시험의 처음 5분은 고기어비에서의 최대연속속도와 해면 고도 하에 고기어비로 흡기관의 최대연속 90% 압력으로 얻어질 수 있는 마력에서 이루어져야 한다. 저기어비 상태에서, 다음 5분에 대한 작동 조건은, 일정 속도로 저기어비로 변속함으로써 얻어진 것이어야 한다.
(6) 저기어비 상태에서, 최대연속속도에서 정격최대연속출력으로 1시간 동안, 그리고 87% 최대연속속도에서 65% 정격최대연속출력으로 1시간 동안의 교변주기로 구성된 10시간 작동
(7) 저기어비 상태에서, 최대연속속도에서 정격최대연속출력으로 1시간 동안, 그리고 84.5% 최대연속속도에서 60% 정격최대연속출력으로 1시간 동안의 교변주기로 구성된 10시간 작동
(8) 저기어비 상태에서, 최대연속속도에서 정격최대연속출력으로 1시간 동안, 그리고 79.5% 최대연속속도에서 50% 정격최대연속출력으로 1시간 동안의 교변주기로 구성된 10시간 작동
(9) 저기어비 상태에서, 최대연속속도에서 정격최대연속출력으로 2시간 동안, 그리고 최대최고 경제 순항출력과 속도 또는 최대권고순항출력으로 2시간 동안의 교변주기로 구성된 20시간 작동
(10) 저기어비 상태에서, 최대경제순항출력과 속도 또는 최대권고순항출력과 속도에서의 5시간 동안, 고기어비 상태에서 작동할 때 모의고도 시험장비가 사용 가능하지 않은 곳에
서의 작동은 임계고도 흡기관 압력 또는 그에 대해 지정된 백분율에서 얻어진 마력으로 수행될 수도 있으며, 연료-공기 혼합비율은 디토네이션을 억제할 만큼 충분히 농후하게 조정될 수 있다.

(d) 헬리콥터 엔진. 헬리콥터 엔진으로 사용하기 위해서는 KAS Part 29.923의 (a)항부터 (j)항의 규정에 적합하거나 또는 다음 일련의 작동을 수행하여야 한다.

(1) 이륙속도에서 정격이륙출력 및 최대연속속도에서 정격최대출력으로 각각 30분 동안의 교변 주기로 구성된 35시간 동안 작동

(2) 최대연속속도에서 정격최대출력 및 최대연속속도에서 70% 정격최대연속출력으로 각각 2시간 동안의 교변주기로 구성된 25시간 작동

(3) 최대연속속도의 80%∼90% 속도에서 정격 최대연속출력의 70% 출력, 그리고 최대 연속속도에서 정격최대연속출력으로 각각 2시간동안의 교변주기로 구성된 25시간 작동

(4) 이륙속도에서 정격최대연속출력의 30% 출력 및 최대연속속도의 80%∼90% 속도에서 30% 정격최대연속출력으로 각각 2시간 동안의 교변주기로 구성된 25시간 작동

(5) 이륙속도에서 정격최대연속출력의 80% 출력 및 110% 최대연속속도에서의 최대연속출력 이나 또는 103% 이륙속도에서 정격이륙출력중의 하나로 각각 2시간 동안의 교변주기로 구성된 25시간의 작동

(6) 105% 최대연속속도에서 105% 정격최대연속출력 또는 정격최대연속출력의 105%를 초과하지 않는 경우, 드로틀 밸브를 완전히 연 상태에서 표준해면 카브레이터 입구 압력 및 그 해상속도에서 작동

(e) 터보과급기 엔진. 터보과급기를 장착한 엔진은 다음을 적용한다. 단, 실제 고도에서 작동될 때 받는 만큼의 기계적 하중과 작동 온도가 엔진과 과급기에 가해지는 것을 신청자가 입증할 수 있는 경우 고도시험은 모의시험으로 수행될 수 있다.

(1) 신청자는 항공기에 사용되는 엔진에 대해서 본 절 (b)항에 규정된 작동절차를 따라야 한다. 다만, 다음은 예외로 한다.

(i) 본 절의 (b)(1)항에 규정된 모든 작동은 해면 고도 압력에서 수행되어야 한다.

(ii) 본 절의 (b)(2) 내지(b)(7)항에 규정된 정격최대연속출력 상태에서의 작동절차 부분은 임계 고도압력에서 수행되어야 하며, 기타 출력에서의 작동부분은 8,000ft 고도압력에서 수행되어야 한다.

(iii) 150시간의 내구성시험에 사용되는 터보과급기의 경우 50시간의 정격최대연속출력 작동 중 제한온도 및 속도가 유지되지 않는다면, 터빈 월 제한유입가스온도와 정격최대연속출력 작동을 위한 최적속도에서 추가로 50시간의 기능시험을 받아야 한다.

(2) 신청자는 헬리콥터에 사용되는 엔진에 대해서 본 절의 (d)항에 규정된 작동시험을 수행하여야 한다. 다만, 다음은 예외로 한다.

(i) 본 절의 (d)(1)항에 규정된 모든 작동은 임계 고도 압력에서 수행되어야 한다.

(ii) 본 절의 (d)(2)와 (d)(3)항에 규정된 정격최대연속출력 상태에서의 작동절차 부분은 임계 고도압력에서 수행되어야 하며, 기타 출력에서의 작동절차 부분은 8,000ft 고도 압력에서 수행되어야 한다.

(iii) 본 절의 (d)(4)항에 규정된 전 작동절차부분은 8,000ft 고도 압력에서 수행되어야 한다.

(iv) 본 절의 (d)(5)항에 규정된 80% 정격최대연속출력에서의 작동은 8,000ft 고도 압력에서 수행되어야 하며, 기타 출력에서의 작동절차부분은 임계고도 압력에서 수행되어야 한다.

(v) 본 절의 (d)(6)항에 규정된 모든 작동시험은 임계 고도 압력에서 수행되어야 한다.

(vi) 내구성시험 중 50시간의 정격최대연속출력 작동 중에 사용되는 터보과급기의 제한은
도 및 속도가 유지되지 않는다면, 터빈 원 제한유입 가스온도 및 정격최대연속출력
작동을 위한 회전속도에서 추가로 50시간 동안의 기능시험을 받아야 한다.

33.51 작동시험
작동시험은, 역화 특성, 공회전, 가속, 과속, 프로펠러와 절화의 기능수행, 그리고 그밖에엔진
의 여러 작동 특성을 보여줄 필요가 있다고 국토교통부장관이 판단한 시험을 포함하여야 한다
다. 엔진이 단단속도 과급기구동장치를 장착한 경우, 설계 및 구성은 과급기가 저속비 작동에
서 고속비 작동으로 변속할 수 있도록 해야 하며, 다기관 압력에 적당한 출력과 고과급기 속
도 비에서의 정격최대연속출력을 위한 속도설정이 5초 이내에 이루어질 수 있도록 해야 한다.

33.53 엔진 구성품시험
(a) 33.49항에 따른 내구성시험에 의해 적절히 입증될 수 없는 엔진의 경우, 신청자는 구성품들
이 예상되는 모든 정상 비행 및 대기조건에서 신뢰성 있게 제 기능을 발휘할 수 있음을
추가적인 시험을 통해 입증하여야 한다.
(b) 항공기에 장착된 상태에서, 만족할 만한 기능성, 신뢰성 및 내구성을 보장하기 위해 온도조
절장비를 필요로 하는 각 구성품에 대해서 그 온도 한계를 설정하여야 한다.

33.55 분해검사
내구성시험의 종료 후, 엔진은 다음과 같아야 한다.
(a) 각 엔진은 완전히 분해되어야 한다.
(b) 엔진에 장착하는 것과 무관하게 설정되어질 수 있는 조정 상태와 기능특성을 가진 각 구성
품은, 시험 초기에 설정되고, 기록된 한계 내로 조정상태와 기능 특성이 유지되어야 한다.
(c) 33.4항에 적합하게 제출된 자료에 따라, 각 엔진 구성품은 형식 설계와 일치해야 하며, 연
속작동을 위해 엔진에 적합하게 장착되어야 한다.

33.57 블록시험 일반수행
(a) 신청자는 블록시험을 수행함에 있어, 진동, 교정, 디토네이션, 내구 및 작동시험 시 동일하
게 설계되고 구성된 별개의 엔진을 사용해도 된다. 단, 별개의 엔진은 내구성시험 시 사용
하는 경우, 시험 시작 전에 교정상태를 확인하여야 한다.
(b) 신청자는 블록시험 중 필요 시 33.4항에서 요구하는 유지보수 및 정비 지침서에 따라, 엔진
에 대해 사소한 수리를 할 수 있다. 만약, 유지보수의 만도가 과도하거나, 엔진의 기능장애
에 의한 정지 횟수가 과도하거나, 또는 블록시험 중 또는 분해검사로부터 발견된 결과, 어
느 한 부품에 대한 대폭적인 수리나 교체가 필요하다고 판단되는 경우, 엔진이나 그 부품
들은 국토교통부장관이 필요하다고 판단하는 추가적인 시험을 받을 수 있다.
(c) 각 신청자는 블록시험 수행 시에, 적정한 직원을 포함한 모든 시험장비를 제공하여야 한다.

Subpart E 설계 및 구성: 터빈엔진

33.61 적용범위
본 장은 항공기용 터빈엔진에 대한 추가적인 설계 및 구조 요건을 규정한다.
33.62 응력해석
각 터빈엔진에 대하여, 엔진로터, 스페이서와 로터 축의 설계 안전여유를 입증하는 응력해석이 수행되어야 한다.

33.63 진동
각 엔진은, 그 회전속도 및 출력범위 내에서 작동 시, 엔진 내의 어떠한 부분에서도 진동에 의한 과다한 응력을 초래하거나, 항공기 구조에 과다한 진동을 유발하지 않고, 작동될 수 있도록 설계 및 구성을되어야 한다.

33.65 써지 및 실속 특성
33.5(b)에서 요구하는 작동 지침서에 따라 엔진을 작동할 때, 시동, 출력 또는 추력의 변화, 출력 또는 추력의 증가, 흡입공기 교란제한 또는 흡입 공기 온도에 따라서 엔진의 과열, 구조적 파괴, 엔진 정지가 발생할 수 있는 정도까지의 설습이나 써지가 발생하지 않아야 하며, 또한 엔진의 작동범위 내에서 출력 또는 추력의 회복이 불가능한 고장 등이 발생하지 않아야 한다.

33.66 블리드 공기시스템
추력 및 출력 감소의 경우를 제외하고, 엔진은 33.7(c)(11)항에서 그 한계로 설정된 배출유동 조건까지의 모든 조건에서, 엔진에 대한 영과 없이 블리드 공기를 공급하여야 한다. 또한 엔진 방범을 위해 쓰이는 블리드 공기가 조절 가능한 경우, 엔진 방방시스템의 작동을 표시해 주는 수단이나 장비가 장착되어야 한다.

33.67 연료시스템
(a) 신청자에 의해 지정된 유동 및 압력 조건으로 연료를 엔진에 공급하는 경우, 엔진은 본 장에서 요구하는 작동 조건에서 적절히 기능할 수 있어야 한다. 엔진에 연료 조절 장치가 장착되여 있는 동안 조작에서는 안 되는 각 연료 조절 조정장치의 경우, 잠금장치에 의해 고정되고, 밀봉되어야 하며, 그렇지 않은 경우에는 접근이 제한되지 않아야 한다. 다른 모든 조정장치는 그 기능이 불명확한 경우, 접근 가능해야 하고, 조정기능을 나타낼 수 있도록 표시되어야 한다.

(b) 엔진 연료 입구가, 연료계량장치가 엔진 구동양정범프 중 엔진 연료입구에 더 가까운 입구 사이에는 연료 스트레이너 또는 필터가 장착되어야 한다. 추가적으로, 다음의 규정들은 (b) 항에서 요구하는 억 스트레이니 또는 필터에 적용한다.

(1) 스크린이나 구성품은 배출과 철소가 용이해야 하며, 쉽게 제거될 수 있어야 한다.

(2) 배출목적으로 스트레이너 또는 필터가 쉽게 제거될 수 있어서 배출설비가 필요 없는 경우를 제외하는, 점검을 세기와 배출을 위한 수단이 있어야 한다.

(3) 갖가운 하중조건 하에서 연결선과 연결부에 적절한 강도 여유가 있거나 없는 경우, 이 무게가 연결선이나 스트레이니 또는 필터의 임구 또는 출구 연결부에 의해 지지되지 않도록 장착되어야 한다.

(4) 연료내의 이물질에 대하여 엔진 연료시스템을 보호하기 위해 필요한 연료 여과의 형식과 등급을 명시하여야 한다. 신청자는 다음의 사항을 입증하여야 한다.

(i) 특정한 여과장치를 통과하는 이물질들이 엔진 연료시스템의 기능을 약화시키지 않는다.

(ii) 연료시스템 내의 연료에 27℃(80°F)의 수분으로 초기 포화되고, 작동 중 발생할 수 있
는 결빙에 가장 위험한 조건으로 첨가되고 냉각되는 수분이 결린 당 0.025온스(리터 당 0.20mm)가 포함된 상태에서 연료시스템을 작동 시, 연료시스템은 설정된 유동 및 압력 범위를 유지할 수 있어야한다. 그러나 이 요건은, 승인된 특정 연료 방망 첨가제가 효과적으로 작동하면서, 또는 가장 불리한 조건에서도 연료 스트레이나나 연료입구에서 연료 온도를 0°C(32°F) 이상으로 유지하면, 주는 가열장치를 연료 시스템에 장착함으로서 적합성을 입증할 수 있다.

(5) 신청자는 여과장치가 엔진의 승인된 한계(엔진의 작동한계에 대해) 내에서 계속 작동할 수 있음을 입증하여야 한다. 이때, 연료는 운용 중 발생할 수 있는 임자크기와 밀도에 대하여 최대정도까지 오염된 것으로 한다. 이러한 조건들 하에서의 작동은 국토교통부장관이 승인할 수 있을 정도의 기간 동안 수행하여야 한다. 이때, 이 기간의 시작은 다음 중 어느 하나에 의해 필터 배출 표시가 처음 나타난 때이다.

(i) 기존의 엔진 기구 또는
(ii) 엔진 연료시스템에 장착된 추가적인 장치

(6) 모든 스트레이나 또는 필터의 바이패스는 모아진 오염물들이 바이패스흐름 통로 내에 있지 않도록 바이패스를 적절히 위치시킴으로써, 모아진 오염물들의 배출이 최소화되도록 설계 및 구성되어야 한다.

(c) 연료시스템이 엔진의 일부로 장착되어 있는 경우, 신청자는 각 유체분사(연료 외의) 시스템과 분사된 유체의 함유량이 제어장치에 의해 충분히 잘 제어된다는 것을 입증하여야 한다.

(d) 30초 OEI 등급의 엔진의 경우 30초 OEI 출력을 자동적으로 조절할 수 있는 장비가 구비되어야 한다.

33.68 흡입시스템 결빙

방행시스템이 모두 작동하는 각 엔진은 다음과 같어야 한다.

(a) 엔진 작동에악영향을 미치거나, KAS Part 25의 부록 C에 정의된 연속 최대 결빙 조건과간헐 최대 결빙 조건에서 출력 또는 주력의 심각한 손실을 초래할 수 있는 엔진 구성품에 얼음이 누적되지 않으며, 비행서비스범위(공회전 포함해서)에 걸쳐 작동할 수 있어야 한다.

(b) 흡입구 방행시스템은 엔진에 악영향 없이, 임계조건에서 방행을 위한 공기 볼리드가 사용가능한 상태로, 지상에서 30분간 공회전 될 수 있어야 한다. 여기서, 대기 온도는 15°F와 30°F(–9°C와 –1°C) 사이이고 평균유 hiệu점으로 20마이크론 이상인 물방울의 형태로 0.3g/㎥ 이상의 수분을 포함하며, 이륙출력/추력의 일시적인 작동을 수반한다. 30분간의 공회전 작동 중, 엔진은 국토교통부장관이 인정할 수 있는 방식으로 정상출력/주력 세팅까지 주기적으로 작동할 수도 있다.

33.69 점화시스템

각 엔진은 지상 및 비행 중에 엔진을 시동할 수 있는 점화시스템을 갖추고 있어야 한다. 전기 점화시스템은 적어도 두 개의 점화기와 두 개의 독립된 2차 전기회로를 가지고 있어야 한다. 단, 연료연소식 추력증강시스템은 하나의 점화기를 사용할 수 있다.

33.71 윤활시스템

(a) 일반 각 윤활시스템은 항공기가 운용하게 될 비행자세와 대기조건에서 적절히 작동되어야 한다.

(b) 오일 스트레이나 또는 필터. 모든 엔진 오일이 통과할 수 있는 오일 스트레이나 또는 필터
가 장착되어 있어야 한다. 이에 추가적으로;
(1) 본 절에서 요구하고 있는 바이패스를 가진 각 스트레이나 또는 필터는 스트레이나 또는 필터가 완전히 막혔을 때에도 오일이 시스템의 다른 부분을 통하여 정상비율로 흐를 수 있도록 구성 및 설치되어야 한다.
(2) 오일 내의 이물질에 대하여 엔진 오일시스템을 보호하기 위해 필요한 여과의 형식과 정도가 정해져야 한다. 신청자는 특정한 여과장치를 지나는 이물질이 엔진 오일시스템의 기능을 악화시키지 않음을 입증하여야 한다.
(3) 본 절에서 요구하고 있는 각 스트레이나 또는 필터는 (b)(2)항에서 엔진에 대해 설정된 정도(입자 크기와 밀도에 대해)보다 심한 정도로 오염된 오일로 인하여 엔진 오일시스템의 기능이 악화되지 않음을 보증할 수 있을 정도의 능력 (엔진에 대해 설정된 작동한계에 대해)을 갖추고 있어야 한다.
(4) 오일탱크 출구에 있는 스트레이나 또는 필터를 제외하고, 이 항에서 요구하고 있는 각 스트레이나 또는 필터의 경우, 오염도가 (b)(3)항에서 설정된 정도에 이르지 않아도 오염도를 표시해 주는 장치가 있어야 한다.
(5) 모든 필터 바이패스는 모아진 오염물들이 바이패스 통로 내에 있지 않도록 바이패스를 적절히 위치시켜, 모아진 오염물들의 배출이 최소화되도록 설계되고 제작되어야 한다.
(6) 오일탱크 출구에 장착되거나, 배출펌프를 위한 스트레이나 또는 필터를 제외하고, 본 항에서 요구하고 있는 바이패스가 없는 각 스트레이나 또는 필터의 경우, 오염도가 (b)(3)항에서 설정된 정도에 이르기 전에 오염이 발생한 것을 조종사에게 경고하는 장치가 구비되어야 한다.
(7) 이 항에서 요구하고 있는 각 스트레이나 또는 필터는 배출과 청소를 위해 접근이 가능하여야 한다.
(c) 오일탱크
(1) 각 오일탱크는 탱크 용량 10% 이상의 확장공간을 가지고 있어야 한다.
(2) 오일탱크 확장 공간이 부주의하게 채워지지 않도록 하여야 한다.
(3) 다소의 오일을 보유할 수 있는 각 오일탱크 필터 연결부는 배출장치에 적합한 장치가 장착되어 있어야 한다.
(4) 각 오일탱크 마개는 누유를 방지하기 위하여 밀봉되어야 한다.
(5) 각 오일탱크 필터는 “오일”이라고 표시되어 있어야 한다.
(6) 각 오일탱크는 확장공간의 위 부분에 밸브를 위한 구멍이 있어야 하며, 이 구멍은 라인을 열거나 막을 수 있는 정도의 농축된 수증기가 어느 곳에도 뿌이지 않도록 배치되어야 한다.
(7) 시스템을 통과하는 오일의 흐름을 막을 수 있는 물체가 오일탱크나, 오일탱크 출구로 유입되지 않도록 하는 장치가 구비되어 있어야 한다.
(8) 오일시스템(오일탱크 지지대를 포함해서)의 바깥 부분에 내화성이 없는 경우, 각 오일탱크의 출구에는 오일 차단밸브가 있어야 한다.
(9) 여압이 안 되는 각 오일탱크는 최대 작동 온도와 5 p.s.i의 내부압력이 동시에 가해질 때 오일이 누출되지 않도록 하여야 한다. 또한 여압이 없는 각 오일탱크는 최대 작동 온도와 5 p.s.i 이상의 내부압력과 탱크의 최대 작동 압력이 동시에 가해질 때, 오일이 누출되지 않아야 한다.
(10) 누유되거나 호른 오일이 탱크와 엔진의 다른 부분 사이에 누적되지 않도록 하여야 한다.
(11) 각 오일탱크는 오일 량 지시계나 오일 량 지시를 위한 장비를 갖추고 있어야 한다.
(12) 프로펠러 페더링시스템이 엔진 오일에 의하여 작동되는 경우에는 다음 사항들을 만족하여야 한다.
(i) 탱크 자체가 아닌 윤활시스템의 어느 한 부분의 결함에 의하여 오일 공급이 감소되는 경우, 탱크 내부 오일량을 가두어 둘 장치가 있어야 한다.
(ii) 가두어진 오일의 양은 페더링이 가능할 수 있을 만큼 충분해야 하며, 페더링 컴프레션 사용이 가능해야 한다. 그리고
(iii) 페어링이나 그 밖의 이물질이 프로펠러 페더링시스템의 안전한 작동에 영향을 미치는 것을 방지하기 위한 장치가 있어야 한다.
(d) 오일 배출 장치 : 오일시스템의 안전한 배출을 위한 배출 장치가 구비되어 있어야 한다.
각 배출 장치는 다음과 같아야 한다.
(1) 접근가능 하여야 한다 : 그리고
(2) 접근치에서도 수동 또는 자동의 부가잠금장치를 가지고 있어야 한다.
(e) 오일 라디에이터 : 각 오일 라디에이터는 물속시험 중 발생할 수 있는 어떠한 전동, 외상상, 그리고 오일 압력 하중에 대하여 왜곡되지 않고 안전할 수 있어야 한다.

33.72 유압 작동시스템
각 유압 작동시스템은 엔진이 작동할 수 있는 모든 조건에서 적절한 기능이 가능하여야 한다.
각 필터나 스크린은 유지보수를 위한 접근이 가능하여 갑판이 가능해야 하고, 각 탱크는 33.71항의 설계기준에 적합하여야 한다.

33.73 출력 또는 추력 응답
엔진의 설계 및 구조는 다음과 같아야 한다.
(a) 항공기에서 사용할 수 있는 최대 블러드 공기 추출과 출력 추출에서, 최소출력/추력으로부터 정격이륙출력/추력까지의 증가가 가능하도록 되어야 한다. 이때 1초 이내에 출력 추출 간을 최소위치에서 최대위치로 움직일 때마다 엔진에 발생하는 초과온도, 좌지, 설상 또는 그 밖의 해로운 현상들이 없어야 한다. 단, 조종을 요하는 다른 작동 영역을 위한 추가적인 시간 중분을 국토교통부장관이 허용하는 경우에는 예외로 한다. 그리고
(b) 고정된 최소 비행 공회전출력 조종간 위치가 가능한 경우에는 이 위치에서부터, 또는 공회전 출력 조종간 위치가 가능한 경우에는 사용 가능한 이륙출력 또는 추력의 15% 이상으로부터, 이륙출력 또는 추력의 95%까지 5초 이내에 가속할 수 있어야 한다. 5초간의 출력 또는 추력 응답은 엔진을 가동시키는데 필요한 블러드 공기와 보기류 하중만을 사용하는 상태에서 안정된 정적 조건으로부터 발생하여야 한다. 이러한 결과 정적은 신청자에 의해 정해지며, 추력증감을 포함한 필요는 없다.

33.74 정지 후 연속회전
비행 중 엔진의 정지 이후에 엔진 구성품 중 어느 한 부분이라도 계속 회전하고, 이러한 계속적인 회전을 방지하는 장치가 없는 경우에는 엔진 부작동으로 인해 예상되는 비행조건 및 최대 비행시간 중 33.75(a)항에서 (c)항에 명시된 현상이 발생되지 않아야 한다.

33.75 안전성 해석
발생 가능한 어떠한 기능장애나 단순 또는 복합 결함 또는 부적절한 엔진 작동으로 인하여 엔진에 다음과 같은 현상이 발생하지 않음을 분석을 통해 입증하여야 한다.
(a) 발화;
(b) 폭발(위험한 파편이 엔진 케이스를 관통함);
(c) 33.23(a)항에 명시된 극한하중보다 큰 하중의 발생 또는
(d) 작동 중지 능력의 상실

33.76 조류 흡입

(a) 본 절의 (b)항 및 (c)항에 대한 적합성은 다음에 따라 입증되어야 한다.

(1) 모든 흡입 시험은 흡입 이전의 대기조건에서 100% 이륙출력 또는 이륙추력 이상으로 안정된 상태의 엔진으로 실시하여야 한다. 이에 추가하여, 적합성의 입증은 최소성능의 엔진이 발휘할 수 있는 해발 최대 정격 이륙추력 또는 출력으로 가장 더운 대기조건에서 운전하는 것을 고려하여야 한다.

(2) 흡입 조류의 수량 및 중량을 결정하기 위하여 본 절에서 사용되는 엔진 흡입구 목의 면적은 신청자가 설정하며, 설정된 면적은 33.5항에서 요구하는 장착 지침서 내에 한계로 명시하여야 한다.

(3) 흡입구로 들어갈 수 있는 단일 대형조류 및 단일 중형조류 중 가장 큰 조류로 인한 엔진 전방부위의 충격이 평가되어야 한다. 본 절의 (b) 또는 (c)항에 명시된 조건에서 흡입될 때, 엔진 구성품들은 본 절의 (b)항 및 (c)항에 적합하지 않을 경우로 엔진 및 관련 부분에 영향을 미치지 않음을 입증하여야 한다.

(4) 흡입구 보호장치가 구비된 엔진의 경우, 본 절에 대한 적합성은 장치의 기능에 따라 결정되어야 한다. 즉, 엔진의 승인 시 흡입구 보호장치를 장착한 상태에서 본 조건에 대한 적합성을 입증하였음을 명시하여야 한다.

(5) 본 절의 (b) 및 (c)항에서 요구하는 조류흡입시험을 수행할 때, 흡입 조류는 당국의 승인 하에 다른 물체로 대체될 수 있다.

(6) 본 절의 요건에 대하여 적합성이 입증되지 않은 경우, 엔진 형식증명 문서에는 엔진이 항공기에 장착될 때 조류가 엔진으로 흡입될 수 없거나, 또는 조류가 엔진으로 흡입되는 공기의 흐름에 악영향을 미치지 않거나 또는 조류가 엔진에 충돌하지 않음을 입증하는 경우에만 장착될 수 있음을 명시하여야 한다.

(b) 대형조류. 대형 조류 흡입 요건에 대한 적합성 입증 시험은 다음에 따라 실시되어야 한다.

(1) 대형 조류 흡입 시험은 회전익 항공기에 장착되는 엔진의 정상 비행 운용 시의 최대 속도로 또는 고정익 항공기에 장착되는 엔진의 경우 200knots의 속도로 조류를 흡입시키고, 단계 로터 블레이드의 가장 위험한 노출 위치에서 표 1에 따라 결정된 중량의 조류를 사용하여 실시해야 한다.

(2) 출력 조절 레버는 대형 조류의 흡입 이후 15초 이내에는 작동해서는 안 된다.

(3) 본 장에 기술된 조건에 따라 단일 대형 조류의 흡입 시 이로 인하여 엔진에 다음과 같은 현상이 발생하지 않아야 한다.

 (i) 발화
 (ii) 엔진 케이스를 관통하는 위험한 파편의 방출
 (iii) 33.23(a)항에 명시된 극한하중을 초과하는 하중의 발생
 (iv) 엔진을 정지시킬 수 있는 능력의 손실

(4) 본 절의 대형조류 흡입 요건에 대한 적합성은 본 시험 보다 33.94(a)항에 따른 블레이드 내포시험 및 로터 불균형 시험이 더 가혹함을 입증하는 경우 대체될 수 있다.

(c) 소형 및 중형조류. 소형 및 중형조류 흡입 요건에 대한 적합성은 다음에 따라 입증되어야
항공기 기술기준

(1) 국토교통부장관이 승인하는 해석 또는 부품시험, 또는 해석 및 시험은 엔진의 동력 손실이나 손상과 같은 주요 흡입 변수들을 결정하기 위하여 실시되어야 한다. 주요 흡입 변수들은 조류 속도에 대한 영향, 위험 흡입 위치 및 1단계 로터의 회전속도 등이다. 조류의 위험 흡입 속도는 지상에서부터 1,500ft 고도까지에서 정상 비행에 필요한 속도의 범위 중 가장 위험한 조건을 반영해야 하며, 항공기의 V1 최소 속도보다 커야한다.

(2) 중형 조류의 엔진시험은 조류 무리의 조류를 모사할 수 있어야 하며, 표 2에 명시된 조류의 중량 및 수량에 따라 시험해야 한다. 단 한 마리의 조류가 정지된 경우, 한번은 엔진의 코어 부위의 유동에 따라 흡입되어야 하고, 또 한 번은, 필요한 경우 전문적인 시험이나 해석에 의해서, 위험한 위치로 판명된 곳으로 흡입되어야 한다. 표 2에서 2마리 이상의 조류가 정지된 경우, 이 중 제일 큰 조류는 엔진 코어의 일차유동에 흡입되도록 해야 하며, 두 번째 조류는 로터 블레이드의 1단계에서 가장 위험하게 노출된 위치를 향해 흡입되도록 하여야 한다. 이외의 나머지 조류는 엔진의 전면에 골고루 분포되도록 발사한다.

(3) 이에 추가하여, 항공기 항공기의 엔진을 제외하고, 적합한 시험이나 해석 또는 시험 및 해석을 통하여 본 절의 시험조건에 따라 표 3에 따른 조류의 수량 및 중량으로 팬의 코어 유동 외각의 가장 안전한 부분으로 흡입 시험을 할 경우, 엔진이 본 절의 승인 가능한 상태에 있을음을 입증하여야 한다.

(4) 중형 조류의 시험 중 명시된 수의 중형 조류가 엔진 로터 블레이드로 통과하는 경우 조류 조류의 흡입시험은 면제될 수 있다.

(5) 소형 조류의 흡입시험은 조류 무리의 흡입을 모사하기 위하여 각각 0.032m² (49.6in²)의 흡입구 면적 당 중량 85g (0.187lb.)의 단일 조류를 흡입시키는 방법으로 최대 16마리의 조류를 흡입시킨다. 조류는 1단계 로터블레이드의 가장 위험한 노출 위치를 향해 발사하여 나머지 조류는 엔진의 전면부에 골고루 분포되도록 발사한다.

(6) 본 절에 따른 조건 하에서의 소형 및 중형 조류의 흡입 시험 시 다음과 같은 현상이 발생하지 않아야 한다.

(i) 지속적인 이상의 출력 또는 추력의 손실
(ii) 본 절의 (c)(7) 또는 (c)(8)항에 명시된 운전 중 엔진의 정지
(iii) 본 절의 (b)(3)항에 정의된 조건(iv) 승인 불가 정도의 엔진 작동 특성의 저하

(7) 항공기 항공기의 엔진을 제외하고, 엔진의 시험 시 다음과의 시험 스펙을 사용한다.

(i) 조류 무리의 흡임을 모사하기 위하여 1초 이내에 첫 번째 조류의 흡임에서부터 마지막 조류까지 흡입시간.
(ii) 흡입 이후 출력레버의 조작 없이 2분 동안 유지
(iii) 시험조건의 75%에서 3분 동안 유지
(iv) 시험조건의 60%에서 6분 동안 유지
(v) 시험조건의 40%에서 6분 동안 유지
(vi) 접근 공회전에서 1분 동안 유지
(vii) 시험조건의 75%에서 2분 동안 유지
(viii) 공회전으로 안정화 후 엔진 정지
(ix) 명시된 시간은 정의된 각 상태에서의 유지시간이며, 정의된 상태 사이의 출력 변화는 10초 이내로 한다.
항공기기술기준 항공기 엔진 기술기준

KAS Part 33

제정 개정: 1993.08.24 33 - : 2013.04.15

(8) 회전익 항공기 엔진의 경우 다음의 시험 스케줄을 사용한다:

(i) 조류 무리의 흡입을 모사하기 위하여 1초 이내에 첫 번째 조류의 흡입에서부터 마지막 조류까지 흡입시킬.

(ii) 시험조건의 75%에서 3분 동안 유지

(iii) 하강 비행 공회전 상태에서 90초 동안 유지

(iv) 시험조건의 75%에서 30초 동안 유지

(v) 공회전에서 안정화 후 엔진 정지.

(vi) 명시된 시간은 각 조건 사이에서 10초 이내의 출력 변화로 정의된 조건에서의 시간을 의미한다.

(9) 다발엔진 장착 회전익항공기에 사용되는 엔진의 형식증명 문서에 중형 조류 흡입 요건에 대해 적합성 입증을 하지 않았음을 명시하여 승인하는 경우, 본 장의 중형 조류 흡입 요건을 입증하지 않을 수 있다.

(10) 본 절의 (c)(7)(ii)항에 제시된 것과 같이 출력 조절 레버의 조정 없이 작동 중 초기 2분 내에 엔진이 설정된 운용 한계를 초과하는 경우 운용 한계의 초과로 인하여 엔진에 불 안전한 상태가 발생하지 않음을 입증하여야 한다.

[KAS Part 33.76 - 1) 대형 조류의 중량 요구]

<table>
<thead>
<tr>
<th>엔진 흡입구 목의 면적 (A) m² (in²)</th>
<th>조류 중량 kg (lb)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.35 (2,092) > A</td>
<td>1.85 (4.07)</td>
</tr>
<tr>
<td>1.35 (2,029) ≤ A < 3.90 (6,045)</td>
<td>2.75 (6.05)</td>
</tr>
<tr>
<td>3.90 (6,045) ≤ A</td>
<td>3.65 (8.03)</td>
</tr>
</tbody>
</table>
항공기 기술기준

[KAS Part 33.76 - 표2] 중형 조류 때 중량 및 수량 요건

<table>
<thead>
<tr>
<th>엔진 흡입구 목의 면적 (A)</th>
<th>조류량</th>
<th>조류 중량 kg (lb)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.05 (77.5) > A</td>
<td>none</td>
<td></td>
</tr>
<tr>
<td>0.05 (77.5) ≤ A < 0.10 (155)</td>
<td>1</td>
<td>0.35 (0.77)</td>
</tr>
<tr>
<td>0.10 (155) ≤ A < 0.20 (310)</td>
<td>1</td>
<td>0.45 (0.99)</td>
</tr>
<tr>
<td>0.20 (310) ≤ A < 0.40 (620)</td>
<td>2</td>
<td>0.45 (0.99)</td>
</tr>
<tr>
<td>0.40 (620) ≤ A < 0.60 (930)</td>
<td>2</td>
<td>0.70 (1.54)</td>
</tr>
<tr>
<td>0.60 (930) ≤ A < 1.00 (1,550)</td>
<td>3</td>
<td>0.70 (1.54)</td>
</tr>
<tr>
<td>1.00 (1,550) ≤ A < 1.35 (2,092)</td>
<td>4</td>
<td>0.70 (1.54)</td>
</tr>
<tr>
<td>1.35 (2,092) ≤ A < 1.70 (2,635)</td>
<td>1 plus 3</td>
<td>1.15 (2.53)</td>
</tr>
<tr>
<td>1.70 (2,635) ≤ A < 2.10 (3,255)</td>
<td>1 plus 4</td>
<td>1.15 (2.53)</td>
</tr>
<tr>
<td>2.10 (3,255) ≤ A < 2.50 (3,875)</td>
<td>1 plus 5</td>
<td>1.15 (2.53)</td>
</tr>
<tr>
<td>2.50 (3,875) ≤ A < 3.90 (6,045)</td>
<td>1 plus 6</td>
<td>1.15 (2.53)</td>
</tr>
<tr>
<td>3.90 (6,045) ≤ A < 4.50 (6,975)</td>
<td>3</td>
<td>1.15 (2.53)</td>
</tr>
<tr>
<td>4.50 (6,975) ≤ A</td>
<td>4</td>
<td>1.15 (2.53)</td>
</tr>
</tbody>
</table>

[KAS Part 33.76 - 표3] 추가 통합 평가

<table>
<thead>
<tr>
<th>엔진 흡입구 목의 면적 (A)</th>
<th>조류량</th>
<th>조류 중량 kg (lb)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.35 (2,092) > A</td>
<td>none</td>
<td></td>
</tr>
<tr>
<td>1.35 (2,092) ≤ A < 2.90 (4,495)</td>
<td>1</td>
<td>1.15 (2.53)</td>
</tr>
<tr>
<td>2.90 (4,495) ≤ A < 3.90 (6,045)</td>
<td>2</td>
<td>1.15 (2.53)</td>
</tr>
<tr>
<td>3.90 (6,045) ≤ A</td>
<td>1 plus 6</td>
<td>1.15 (2.53)</td>
</tr>
</tbody>
</table>

33.77 외부 물체 흡입 - 얼음

(a) [예비]
(b) [예비]
(c) 본 절의 (e)항의 조건 하에서 얼음의 흡입으로 인하여 다음과 같은 현상이 발생하지 않아야 한다.
(1) 출력 또는 추력의 지속적인 손실
(2) 엔진을 정지시켜야 하는 상황
(d) 다음 요건에 대하여 본 장에 대한 적합성이 입증되는 보호장치를 장착한 엔진의 경우 (e)항에 기술된 조건 하에서 외부물질 흡입 요건을 입증할 필요가 없다.
(1) 이러한 외부 물질은 보호 장치를 통과하지 못하는 크기의 물질이다.
(2) 보호장치는 외부물질의 충격을 견딜 수 있다.
(3) 외부물질이 보호장치에 걸려있는 경우, 이로 인하여 엔진으로 흡입되는 공기의 흐름이 방해되거나, 이로 인한 출력 또는 추력이 본 절의 (c)항에서 요구하는 수치 이상으로 감소되지 않는다.
(e) 본 절의 (c)항에 대한 적합성은 다음의 흡입 조건 하의 엔진 시험으로 입증되어야 한다.
(1) 얼음의 양은 전형적인 흡입 카울 및 엔진 전면부의 방빙계통 작동 2분 지연에 따라 축적되는 최대량이거나, 이러한 크기의 엔진에 대응하는 중량 및 두께의 얼음판이어야 한다.
(2) 흡입속도는 엔진 흡입구로 들어가는 얼음을 모사하여야 한다.
(3) 엔진 작동은 최대 운항출력 또는 추력상태이다.
(4) 흡입은 25°F(-3.9℃)에서 연속 최대 얼음 조우 상태를 모사하여야 한다.

33.78 강우 및 우박 흡입
(a) 모든 엔진
(1) 엔진이 최대 운항출력 상태이고 기진 기상조건에서 항공기가 4,500m(15,000ft)까지의 고도에서 최대 진보속도로 운용 중일 때 큰 우박(0.8cm에서 0.9 cm)의 흡입으로 인하여 엔진에 해로운 기계적 손상 또는 출력 또는 추력의 손실이 초래되거나 엔진을 정지시킬 필요가 없어야 한다. 흡입되는 우박의 질량은 무작위로 흡입구의 전면을 향해야 하고, 다른 절반은 임계 흡입면을 향해야 한다. 우박은 실제 우박과 마주치는 상태와 유사하게 급속한 순서로 흡입되어야 하고 우박의 크기와 수는 다음에 따라 결정되어야 한다.
(i) 엔진 흡입구면적이 0.0645m²(100in²) 이하인 경우, 25mm(1in) 직경의 우박 하나.
(ii) 엔진 흡입구면적이 0.0645m²(100in²) 이상인 경우, 흡입구 면적 0.0968m²(150in²) 단 또는 나머지 일부분에 대해 25mm (1in) 직경의 우박 하나 및 50mm(2in) 직경의 우박 하나
(2) 이 절의 (b)항에서 규정하는 것을 제외하고, (a)(1)항의 요건에 추가하여, 부록 B에서 정의된 인증 기준 농도의 강우가 흡입되는 동안과 흡입된 이후에도 엔진이 지정된 운용범위 전체에서 제 기능을 발휘할 수 있음을 입증하여야 한다. 강우가 3분간 연속적으로 지속되고 우박이 30초간 연속적으로 지속될 경우에도 엔진의 갑작스러운 정지, 작동 중지, 추력 손실이거나 회복 불가능한 저속 또는 설속 혹은 가속 속도 능력을 상실 등이 없어야 한다. 또한 해로운 기계적 손상, 출력 또는 추력 손실 혹은 다른 유해한 엔진 이상 현상이 흡입 이후에 존재하지 않음을 입증하여야 한다.
(b) 회전익 항공기 엔진, 본 절의 (a)(2)항에 규정된 요구사항에 대한 대안으로서 회전익항공기의 터빈 엔진의 경우, 흡입구면에 균일하게 분포되어 있고, 공기 흡입으로 인한 물방울 흐름의 무게 비율이 적어도 4 퍼센트인 강우가 흡입되는 동안과 흡입된 이후에도 엔진이 제 기능을 발휘할 수 있음을 입증하여야 한다. 엔진은 갑작스러운 정지, 작동 중지, 추력 손실이거나 회복 불가능한 저속 또는 설속 혹은 가속 속도 능력을 상실 등이 없어야 한다. 또한 해로운 기계적 손상, 출력 또는 추력 손실 혹은 다른 유해한 엔진 이상이 흡입 이후에 존재하지 않음을 입증하여야 한다. 강우는 다음과의 정적 지상수평조건에서 흡입되어야 한다.
(1) 이륙출력에서 강우 흡입이 없는 정상적인 운항 기간 이후 갑작스러운 강우의 흡입은 이륙출력에서 3분간 지속되어야 한다.
(2) 이후 최소 공회전까지 급격히 감속하는 동안 지속적으로 강우를 흡입하여야 한다.
(3) 비행 운용에 승인된 최소 공회전 출력 상태에서 강우는 3분간 지속적으로 흡입되어야 한다.
(4) 이후 이륙 출력까지 급격히 가속하는 동안 지속적으로 강우를 흡입해야 한다.

제정: 1993.08.24 33 - 20
재정: 2013.04.15
(c) 초음속 항공기 엔진. 본 절의 (a)(1)와 (a)(2)항의 요건에 추가하여 초음속 항공기 엔진의 경우, 초음속 순항속도에서 3개의 우박을 흡입기에 흡입시키는 병계의 시험을 수행하여야 한다. 이 우박들은 엔진의 일체를 향해 해고, 이로 인해 흡입 이후 엔진에 흡수된 기계적 손상 혹은 출력 또는 추력의 손실이 발생하거나, 엔진은 정지시킬 필요가 없어야 한다. 이들 우박들의 크기는 10,500m(35,000ft)에서 25mm(1in)이고, 18,000m (060,000ft)에서 6mm (1/4in)로 선형적으로 변화하는 적경에 대해 가장 낮게 예상되는 초음속 순항 고도에 대응하는 적경으로 결정되어야 한다. 대안으로, 3개의 더 큰 우박을 아음속에서 흡입시킬 수도 있는데, 이때 이 더 큰 우박의 운동 에너지는 해당 초음속 흡입 상태와 동등하게 되어야 한다.

(d) 보호 장치가 장착되어 있거나 또는 사용을 필요로 하는 엔진의 경우 신청자가 다음을 입증한다면, 본 절의 (a), (b), (c)항에서 요구하는 엔진의 강우와 우박 흡입에 대한 모의시험은 감항당국의 판단에 따라 완전히 또는 부분적으로 생략될 수 있다.

1) 보호 장치의 크기는 해당 강우와 우박이 통과할 수 없는 크기이다.
2) 보호 장치는 해당 강우와 우박의 충격에 견딜 수 있다.
3) 보호 장치에 의해 정지된 해당 강우와 우박은 본 절의 (a), (b), (c)항에서 승인된 정도를 초과하는 손상, 출력 또는 추력의 손실 혹은 다른 해로운 이상을 엔진에 초래할 정도의 엔진 흡입 공기의 흐름을 방해하지 않는다.

33.79 연료연소식 추력증강장치
노즐을 포함한 각 연료연소식 추력증강장치는 다음을 만족하여야 한다.
(a) 연료연소식 추력증강장치를 차단할 수 있어야 한다.
(b) 견고-견고 반복이 허용되어야 한다.
(c) 계획된 작동범위 내에서 조절이 가능해야 한다.
(d) 증강장치 연소의 결함 또는 기능장에 중장장치에 의해 제공되는 추력 이외에 엔진의 추력 손실이 발생하지 않아야 한다.
(e) 기타 엔진 제어 및 호환되어 작동하는 제어능력을 있어야 하며, 만약 중장장치가 작동하도록 되어 있는 최소 회전속도 이하로 엔진 로터속도가 감소할 경우에는 자동적으로 중장장치의 연료 흐름을 차단하는 제어능력을 구비되어야 한다.

Subpart F 터빈시험 ; 터빈엔진

33.81 적용범위
본 장은 터빈 엔진의 블록시험에 관하여 규정한다.

33.82 일반사항
본 Subpart에서 요구하는 내구성시험 이전에, 엔진의 장착 여부와 무관하게 조정 상태 및 기능적 특성을 설정할 수 있는 구성품에 대해서는 그 조정 상태 및 기능적 특성을 확인하고 기록하여야 한다.

33.83 전동시험
(a) 기계적 또는 공기역학적인 원인에 의한 전동 영향을 받기 쉬운 엔진 구성품의 전동 특성이
규정된 비행 범위 전체에서 적합함을 입증하기 위해 각 엔진에 대하여 진동 조사를 수행해야 한다. 전진 진동조사는 경험, 분석 및 구성품 시험의 적절한 조합을 기초로 하여야 하고 최소한 블레이드, 베인, 로터 디스크, 스펙스 및 로터 축을 포함하여야 한다.

(b) 조사는 출력 또는 추력 범위를 포함하여야 하며, 또한 규정된 비행 범위의 대기 상태에 걸쳐 최저 회전속도로부터 2분 이상의 시간 동안 수행되는 최대 물리적 회전속도 및 보정 회전속도의 103%의 속도까지와 과속을 포함하여 수행되는 다른 모든 물리적 회전속도 및 보정 회전속도의 100%의 속도까지의 작동에 해당하는 각 로터 시스템의 물리적 회전속도 및 보정 회전속도 모두를 포함하여야 한다. 요구되는 최고 물리적 회전속도 또는 보정 회전속도에서 응력 피크가 발생하는 경우, 존재하는 최대 응력 값을 알기 위하여 조사 범위를 충분히 넓혀야 한다. 단, 범위는 최고 속도의 2% 이내로 한다.

(c) 평가는 다음과 같이 이루어져야 한다.

(1) 가변 베인 각도, 압축기 풀리드, 보기류 하중, 제조자가 규정한 가장 불리하게 왜곡된 형태의 흡입구 공기흐름. 가장 불리한 베파간 조건은 모두 계획된 변경에 따른 작동 시의 전동 특성에 대한 영향

(2) 전동의 영향을 받을 수 있는 이들 계통에 푸리터를 유도하거나 또는 영향을 미칠 수 있는 공기 역학적 및 항공 역학적 요소

(d) 아래 (e)항의 규정을 제외하고, 이 절의 요건에 따라 징해진 전동 특성과 관련된 전동 응력이 적절한 정상 응력과 조합되었을 때, 재료 물성치에 허용될 수 있는 범위에 따라 작동 조건에서 예상할 수 있는 여유 값을 가진 후에도 해당 재료의 내구성 한계보다 작아야 한다. 평가하고자 하는 각 부품이 가지는 이러한 응력 여유가 적합함을 입증하여야 한다. 만일 어떤 운용 조건 또는 범위를 제한할 필요가 있다고 판단될 경우, 운용 및 장착 한계를 설정해야 한다.

(e) 잘못된 조건(불균형, 스테이터 베인 통로의 극복적 막힘 또는 확장, 연료 노즐의 막힘, 부적절하게 예측된 압축기 변수, 기타)에 의해 야기되는 여건의 진동 특성에 대한 영향은 시험 또는 분석, 또는 이전의 경험을 참고하여 평가하여야 하고 위험한 조건을 초래하지 않음을 입증하여야 한다.

(f) 이 절에 대한 적합성을 엔진 진동 특성에 영향을 줄 수 있는 각 특정한 장착 형태에 대해 입증하여야 한다. 만약 이러한 진동의 영향을 엔진 인증 과정 중에 완전히 조사할 수 없다면 진동 영향을 평가하고 적합성을 입증할 수 있는 방법을 구체화하고 33.5의 규정에서 요구하는 장착 지침서에 기재하여야 한다.

33.85 교정시험

(a) 각 엔진은 33.87항의 요건에 따라 내구성시험을 위한 출력특성 및 조건들에 근거하여 적합성 검증을 위한 내구성시험을 하여야 한다. 출력특성 교정시험의 결과는 속도, 압력, 온도 및 고도의 전 각도 범위에 걸친 엔진의 특성을 체계적으로 조사하는 기초가 된다. 출력 등급은 항공기 운항을 위한 블레이드 공기가 없고, 엔진 기능에 필수적인 보기류만 부착되어 있는 경우의 표준 대기 상태를 기준으로 한다.

(b) 내구성시험이 끝난 후, 해당 조건에서 출력을 검증하여야 하며, 내구성시험 동안에 발생하는 모든 출력 특성의 변화를 결정하여야 한다. 내구성시험의 마지막 부분 동안 측정된 값을 본 항의 요구 조건에 적합함을 입증하는데 사용될 수 있다.

(c) 본 절에 대한 적합성을 입증함에 있어 각 조건은 압축 전에 안정화되어야 한다. 단, 본 절의 (d)항의 규정에 따라 하는 것은 제외한다.
(d) 정격 30 초 OEI나 정격 2분 OEI 특성을 가진 엔진의 경우 33.87(f)(1)항 내지 (8)항에서 명시한 내구성시험 동안 얻어진 측정치들은 이 절의 정격 OEI에 대한 요구사항에 대한 적합성을 입증하는데 사용할 수 있다.

33.87 내구성 시험.

(a) 일반. 각 엔진은 엔진 형식과 사용 목적에 따라 이 절의 (b)항 내지 (g)항의 규정에 따라 적합하여야 하는 총 150 시간 이상의 운용을 포함한 내구성 시험을 거쳐야 한다. 본 절의 (b), (c), (d), (e) 또는 (g)에 따라 시험을 수행하여야 하는 경우, 요구된 150 시간의 운용을 위하여, 규정된 6시간 시험절차를 25회 수행하여야 한다. 정격 30 초 OEI 와 정격 2 분 OEI가 요구되는 엔진은 이 절의 (f)항에 따라 추가적인 시험을 수행하여야 한다. 그리고 다음의 시험요구 조건이 적용된다.

(1) 시험하고자 하는 특정 엔진에 대해, 국토교통부장관이 적절하다고 결정한 절차에 따라 작동을 수행하여야 한다.

(2) 자동 제어가 수동 제어로 정상적으로 대체되는 작동 또는 특정시험 운용을 위한 수동 제어가 별도로 지정되거나 작동의 경우를 제외하고, 엔진의 일부인 자동 제어 장치가 내구성 시험 동안에 제어하여야 한다.

(3) 본 절의 (a)(5)항에 제시된 경우를 제외하고, 출력 또는 추력, 가스온도, 로터 축 회진속도 및 제한해야 할 경우의 엔진 외부면의 온도는 시험 중인 특정 엔진의 작동에 관련된 값의 100% 이상이어야 한다. 만일 모든 매개 변수가 동시에 100% 수준을 유지하지 못하면, 1회 이상의 시험이 행하여 질 수도 있다.

(4) 운전은 33.7(c)항에 적합하도록 규정된 규격에 합치는 연료, 윤활유 및 유압유를 사용하여 행해져야 한다.

(5) 엔진 및 항공기 운용을 위한 최대 블리어 톱기는 적어도 운전시간의 1/5 시간 동안 사용되어야 한다. 그러나 만약 국토교통부장관이 이 내구성 시험의 타당성이 소상되지 않는다고 판단한 경우, 운전 중의 출력, 추력 또는 로터 축 회진속도는 시험하는 특정한 작동에 관련된 값의 100% 보다 작을 수 있다.

(6) 각 보기 구동 장치와 마운팅 연결 장치에는 하중이 가해져야 한다. 항공기의 운용 중에 만 사용되는 각 보기에 의하여 부과되는 하중은, 정격최대연속출력 또는 추력 및 보다 높은 출력 동안에 엔진 구동장치 및 연결부에 대하여 신청자가 규정한 제한하중에야 한다. 하중을 받는 모든 보기 구동장치 및 마운팅 연결장치의 내구성시험은 시험의 타당성이 승인된 분석에 의하여 확인될 경우 별도의 시험으로 수행할 수 있다.

(7) 모든 정격출력 또는 추력에서의 운전 중에 가스의 온도와 오일 유입구의 온도는 시험기간이 5분 이내의 경우로서 안정화가 허용되지 않는 경우를 제외하고는 하계온도를 유지해야 한다. 적어도 첫번의 운전은 최소압력 한계에서 연료, 오일 및 유압유와 함께 이루어져야 하며, 적어도 첫번의 운전은 오일 가스 중의 가능한 최대 압력을 얻기 위한 필요에 따라 감소된 유체 온도 상태에서 최대 입력 한계로 연료, 오일 및 유압유와 함께 이루어져야 한다.

(8) 로터 축의 순간적인 과속 또는 가스 온도의 순간적인 초과 발생 빈도가 제한되는 경우, 본 절의 (b)항 내지 (g)항에서 요구되는 가속 횟수는 제한된 과속이나 초과 온도에서 이루어져야 한다. 만일 발생 빈도의 제한이 없으면 요구되는 가속 횟수의 반은 제한된 과속 또는 초과온도 상에서 이루어져야 한다.

(9) 초음속 항공기에서 사용하도록 승인을 받은 엔진 형식에 대해서는 다음의 추가적인 시험 요건을 적용한다.
(i) 점화를 확인하기 위한 별도의 시간이 필요한 경우에 연소 추력 증가장치가 증가 위치로 움직이는 경우를 제외하고, 추력설정 바구기 위해서 출력제어레버는 1초 이내에 최초 위치에서 최종 위치로 움직여야 한다.

(ii) 시험기간이 안정화를 이루 정도로 길지 않은 경우를 제외하고, 정격추력이 증가된 상태에서 운전을 하는 동안의 유효유의 온도는 한계온도로 유지되어야 한다.

(iii) 초음속 운전을 모사한 동안에 연료의 온도 및 흡입공기의 온도는 한계 온도보다 낮아서는 안 된다.

(iv) 33.5(b) 항에서 규정한 방법에 따라 운전을 하는 동안의 내구성시험은 연소추력 증가장치와 1/2배기 노즐이 설치되어 있고 배기 노즐의 가변이 작동하는 상태로 설정되어야 한다.

(v) 최대연속추력 및 그에 준하는 백분율의 추력상태에서의 운전 중에 엔진은 그 추력 상태에 대한 한계에서 흡입공기가 교란되는 상태로 운용되어야 한다.

(b) 최전력 항공기용 엔진 이외의 엔진. 본 절의 (c), (d) 또는 (e) 항에서 요구하는 등급의 최전력 항공기 엔진을 제외한 각 엔진에 대하여 신청자는 다음의 운전을 수행하여야 한다.

(1) 이륙 및 공회전, 정격이득 추력과 추력 및 공회전 추력과 추력에서의 5분간 교대로 1시간. 이륙 및 공회전 상태에서의 추력 및 추력과 추력에서 상승하는 로터 속도 및 가스 온도 조건에서의 추력 및 추력과 추력은 제작자가 세운 계약에 따른 출력 제어에 의하여 설정된 것과 같아야 한다. 신청자는 어느 한 기간 동안에 성능검점을 위한 자료를 취합하면서 로터의 속도, 추력 그리고 추력을 수동으로 제어할 수도 있다. 터빈 유입구의 온도, 로터속도 또는 축 출력 추력과 추력은 증가된 추력과 추력과 추력의 수명을 갖고 있는 엔진은 이륙작동 기간 동안 증가된 등급으로 유지되어야 한다. 운용 엔진도 증가시키지 않도록 정격 이득 추력이 증가된 상태의 엔진에 대해서, 증가된 정격에서 수행하는 운전의 총 양은 국토교통부 장관이 결정한다. 각 기간 후에 출력 설정을 변경하는 경우, 출력제어 레버는 본 절의 (b)(5) 항에 규정된 대로 움직여야 한다.

(2) 정격최대연속 추력 및 이득출력과 추력. 다음의 조건에서 30분.

(i) 25회의 6시간 내구성 시험 주기 중 15회 동안 정격최대연속출력 및 추력.

(ii) 25회의 6시간 내구성 시험 주기 중 10회 동안 정격 이득출력 및 추력.

(3) 정격최대연속출력 추력 및 추력. 정격최대 연속 출력 및 추력에서 1시간 30분.

(4) 증가 순항출력 및 추력. 최대연속 엔진 최선출력 및 저상 또는 최소 공회전속도 사이에서 적어도 15번의 극단한 동작 속도 및 시간 중간값에 상응하는 연속적인 출력 레버의 위치에서 2시간 30분. 일정한 속도로 작동하는 엔진의 경우에는, 속도 대신에 추력 및 추력을 변화시킬 수 있다. 지상 공회전 과 최대연속 조건 사이에 중요한 최대치 진동이 존재한다면 증가된 운전에 소요된 총 시간의 50%를 넘지 않는 범위까지 최대 진동이 증가되어 있는 동안 이루어진 운전량을 증가시키기 위하여 선택된 증분의 수를 변동할 수 있다.

(5) 가속 및 감속 운전. 공회전 출력과 추력으로부터 정격이득출력과 추력까지의 6 주기로 이루어지고 총 동안 이득출력 레버 위치와 약 4분30초 동안의 공회전 출력레버 위치로 유지된 30분간의 가속 및 감속. 본 항에 따라서 출력제어레버는 한 극한 위치에서 다른 극한 위치로의 이동에 대해 예정된 순서를 필요로 하는 경우 보다 긴 시간이 허용될 수 있으나 2초를 초과하지 않아야 한다.

(6) 시동. 100회의 시동이 이루어져야 하며, 그 중 25회의 시동에서는 적어도 2시간의 엔진
작동 정지가 선행되어야 한다. 정상적인 시동을 시도하기 이전에 신청자가 규정한 최소 연료 배출시간 동안 일시 정지하는 적어도 10회의 엔진 가(假)시동이 있어야 한다. 엔진이 정지된 이후 15분 이내에 적어도 10회의 정상적인 재시동이 있어야 한다. 나머지 시동은 150시간 내구성 시험이 완료된 이후에 이루어져야 한다.

(c) 정격 30분 OEI 출력이 요구되는 화기의 항공기 엔진. 정격 30분 OEI 출력이 요구되는 각 회전익 항공기 엔진에 대하여 신청자는 아래와 같은 일련의 시험을 수행하여야 한다.

(1) 이륙 및 공회전. 정격이륙 출력과 추력 및 공회전 출력과 추력에서의 5분간 교대로 1시간, 이륙 및 공회전 상태에서의 출력과 추력과 그에 상응하는 로터 속도 및 가스 온도 조건에서의 출력은 제작자가 설정한 계획에 따른 출력 제어에 의하여 설정된 것과 같아야 한다. 어느 한 기간 동안에 성능점검을 위한 자료를 취합하면서 로터의 속도, 출력 그리고 추력은 수동으로 제어할 수 있도록 한다. 터빈 유입구의 온도, 로터속도 또는 축 출력 증가를 포함한 증가된 정격 이륙출력을 갖고 있는 엔진은 이륙작동기준 동안 증가된 정격 출력으로 유지되어야 한다. 각 기간 후에 출력 설정을 변경하는 경우, 출력계어 레버는 본 절의 (c)(5) 항에 규정된 대로 움직여져야 한다.

(2) 정격 30분 OEI출력 : 정격 30분 OEI 출력에서 30분간의 정격 출력이 요구되는 화기의 항공기 엔진에 대하여 공회전 출력과 추력에서의 분간 교대로 30분간의 정격 출력이 요구되는 각 항공기 엔진에 대하여 신청자는 아래와 같은 일련의 시험을 수행하여야 한다.

(3) 정격 최대연속출력: 정격 최대연속출력에서 2시간간의 정격 출력을 요구하는 화기의 항공기 엔진에 대하여 공회전 출력과 추력에서의 분간 교대로 1시간간의 정격 출력을 요구하는 각 항공기 엔진에 대하여 신청자는 아래와 같은 일련의 시험을 수행하여야 한다.

(4) 증가 순항출력 및 추력. 최대연속 엔진 회전속도 및 지상 또는 최소 공회전속도 사이에서 적어도 12분간의 적응시간이 동안 동작하는 연속적인 출력 레버의 위치에서 2시간. 일정한 속도로 동작하는 엔진의 경우에는, 속도 대신에 출력을 변화시킬 수 있다. 지상 공회전과 최대연속 조건 사이에 중요한 최대치 전동이 존재한다면 증가된 작동에 소요된 총 시간의 50%를 넘지 않는 범위까지 최고 전동에 노출되어 있는 동안 수행된 작동량을 증가시키기 위하여 선택된 분의 수를 변동하여야 한다.

(5) 가속 및 감속 작동. 공회전 출력으로부터 정격이륙출력까지의 6주기로 이루어지고 30초 동안 이륙출력 레버 위치로 4분간 동안의 공회전 출력레버 위치로 유지된 30분간의 가속 및 감속. 본 항에 따라서 출력계어레버는 한 극한 위치에서 다른 극한 위치까지 1조 이내에 움직여야 한다. 단 제어 작동의 다른 영역이 출력계어 레버의 한 극한 위치에서 다른 극한 위치로의 이동에 대해 예정된 순서를 필요로 하는 경우, 보다 긴 시간이 허용될 수 있으나 2초를 초과하지 않아야 한다.

(6) 시동. 100회의 시동이 이루어져야 하며 그 중 25회의 시동에서는 적어도 2시간의 엔진 작동 정지가 선행되어야 한다. 정상적인 시동을 시도하기 이전에 신청자가 규정한 최소 연료 배출시간 동안 일시 정지하는 적어도 10회의 엔진 가(假)시동이 있어야 한다. 엔진이 정지된 이후 15분 이내로 적어도 10회의 정상적인 재시동이 있어야 한다. 나머지 시동은 150시간 내구성 시험이 완료된 이후에 이루어져야 한다.

(d) 계속적인 정격 OEI 출력이 요구되는 화기의 항공기 엔진. 계속적인 정격 OEI 출력이 요구되는 각 회전익 항공기 엔진에 대하여 신청자는 아래와 같은 일련의 시험을 수행하여야 한다.

(1) 이륙과 공회전. 정격 이륙출력과 공회전 출력에서의 5분간 교대로 1시간. 이륙 및 공회전 상태에서의 출력과 그에 상응하는 로터 속도와 가스 온도 조건은 제작자에 의해 설정된 계획에 따른 출력 제어에 의하여 설정된 것과 같아야 한다. 어느 한 주기 동안 성능점검을 위한 자료를 취합하면서 로터의 속도와 출력을 수동으로 제어할 수 있도록 한다. 터빈 유입구의 온도, 로터속도 또는 축 출력 증가를 포함한 증가된 이륙출력 등급을 갖고 있는 엔진의 경우 정격이륙 출력에서의 이 작동기간은 증가된 출력등급에 일치하여야 한다.
각 기간 후에 출력 설정을 변경하는 경우, 출력제어 레버는 본 절의 (c)(5) 항에 규정된 대로 움직여져야 한다.
(2) 정격최대연속 및 이륙 출력. 다음의 조건에서 30분.
 (i) 25회의 6시간 내구성 시험 주기 중 15회 동안 정격최대연속출력.
 (ii) 25회의 6시간 내구성 시험 주기 중 10회 동안 정격 이륙출력
(3) 정격최대연속 OEI 출력. 정격연속 출력에서 1시간.
(4) 정격최대연속 출력. 정격최대연속 출력에서 1시간.
(5) 증가 순향출력. 최대연속 엔진 최고속도 및 지상 또는 최소 공회전속도 사이에서 적어도 12회의 근사한 등가 속도 및 시간 증가분에 상응하는 연속적인 출력 레버의 위치에서 2시간. 일정한 속도로 작동하는 엔진의 경우에는, 속도 대신에 출력을 변화시킬 수 있다. 지상 공회전과 최대연속 조건 사이에 중요한 최대체 증기는 존재한다면 증가된 작동에 소요된 총 시간의 50%를 넘지 않는 범위까지 최고 전동에 노출되어 있는 동안 수행된 작동량을 증가시키기 위하여 선택된 증분의 수를 변동할 수 있다.
(6) 가속 및 감속 작동. 공회전 출력으로부터 정격이륙출력까지의 6주기로 이루어지고 30초 동안 이륙출력 레버 위치와 약 4분 30초 동안의 공회전 출력 레버 위치로 유지된 5분간의 가속 및 감속. 본 항에 따라서 출력제어레버는 한 극한 위치에서 다른 극한 위치까지 1초 이내에 움직여야 한다. 단 제어작동의 다른 영역이 출력 제어 레버의 한 극한 위치에서 다른 극한 위치로의 이동에 대하여 예정된 순서를 필요로 하는 경우, 보다 긴 시간이 허용될 수 있으나 2초를 초과하지 않아야 한다.
(7) 시동. 100회의 시동이 이루어져야 하며 그 중 25회의 시동에서는 적어도 2시간의 엔진 작동 경치가 선행되어야 한다. 정상적인 시동을 시도하기 이전에 신청자가 규정한 최소연료 배출시간 동안 일시 정지하는 적어도 10회의 시동이 있어야 한다. 엔진이 정지된 이후 15분이내에 적어도 10회의 정상 시동이 있어야 한다. 나머지 시동은 150시간의 내구시험에 완료된 이후에 이루어져야 한다.
(e) 2분 30초 OEI 출력등급이 요구되는 회전익항공기 엔진. 정격 2분 30초 OEI 출력이 요구되는 각 회전익항공기 엔진에 대하여 신청자는 아래와 같은 일반의 시험을 수행하여야 한다.
(1) 이륙. 2분 30초 OEI 및 공회전 전. 정격이륙 출력 및 공회전 출력에서 5분간의 교변 주기로 1시간. 단 3번째 및 6번째 이륙출력 기간 동안에는 단 2분 30초 만 정격이륙출력으로 행하여져야 하고 나머지 2분 30초는 정격 2분 30초 OEI 출력에서 수행되어야 한다. 이륙. 2분 30초 OEI 및 공회전 상태에서의 출력과 그에 상응하는 로터 속도와 가스 온도 상태는 제작자에 의해 설정한 계획에 따른 출력 제어에 의하여 설정된 것과 같아야 한다. 신청자는 어느 한 주기 동안 성능점을 위한 자료를 취합하면서 로터의 속도와 출력을 수동으로 제어할 수도 있다. 터빈 유입구의 온도, 로터속도 또는 축 출력 증가를 포함한 증가된 정격 이륙출력을 갖고 있는 엔진의 경우 정격이륙 출력에서의 이 작동기간은 증가된 출력등급에 일치하여야 한다. 각 기간 후에 출력 상태를 변경하는 경우, 출력제어 레버는 본 절의 (d)(6) 항에 규정된 대로 움직여져야 한다.
(2) 이 절의 (b)(2)항 내지 (b)(6)항 까지 또는 (c)(2)항 내지 (c)(6)항 까지 또는 (d)(2)항 내지 (d)(7)항까지에서 요구하는 적용 가능한 시험은 2시간 30분 OEI 출력에서 수행되어야 한다. 단 6시간의 시험 순서 중 하나에서 이 절의 (b)(2)항의 이륙출력시험 기간에서 30분 또는 이 절의 (c)(2)항의 30분 OEI 출력시험 기간에서 30분 또는 이 절의 (d)(3)항의 연속 OEI 출력시험 기간에서 1시간 중 마지막 5분은 예외로 한다.
(f) 정격 30초 OEI 출력 및 2분 OEI 출력이 요구되는 회전익 항공기 엔진. 정격 30초 OEI 및
2분 OEI 출력이 요구되고 이 절의 (b), (c), (d) 또는 (e)항에 따라 시험을 완료한 각 회전익 항공기 엔진에 대하여 신청자는 시험된 엔진을 33.93(a)항의 요구사항에 대한 적합성을 입증하기 위해 필요한 범위까지 분해하여야 한다. 이후 시험된 엔진은 이 절의 (b), (c), (d) 또는 (e)항의 시험 작동 동안 사용된, 감항성유지지침서에서 소모품으로 지정된 그러한 부품들은 제외한 동일한 부품을 이용하여 재조립 되어야 한다. 그 후 신청자는 4회에 걸쳐 다음의 시험순서를 120분 이상의 전체시간 동안 수행하여야 한다.
(1) 이륙 출력. 정격이륙출력에서 3분
(2) 30초 OEI 출력. 정격 30초 OEI 출력에서 30초.
(3) 2분 OEI 출력. 정격 2분 OEI 출력에서 2분
(4) 30분 OEI 출력. 연속 OEI 출력 또는 최대 연속출력. 정격 30분 OEI 출력. 정격연속 OEI 출력 또는 정격최대연속출력 중 가장 큰 것에서 5분. 단 첫 시험 순서 동안 이 기간은 65분이 되어야 한다.
(5) 50% 이륙 출력. 50% 이륙 출력에서 1분
(6) 30조 OEI 출력. 정격 30조 OEI 출력에서 30조.
(7) 2분 OEI 출력. 정격 2분 OEI 출력에서 2분
(8) 공회전. 공회전에서 1분
(g) 초음속 항공기엔진. 초음속 항공기에 사용하도록 승인된 엔진형식에 대하여 신청자는 다음을 수행하여야 한다.
(1) 해면 주위 대기 조건하에서의 아음속 시험. 아래의 사항으로 이루어진 각 1시간씩 30회의 작동
 (i) 5분간의 공회전 추력이 수반되는 정격이륙 증가 추력에서 5분 주기의 2회
 (ii) 5분간의 정격이륙추력의 15%를 넘지 않는 상태를 수반하는 정격 이륙추력에서의 5분 주기의 1회
 (iii) 정격최대연속 증가 추력이 정격이륙 증가 추력보다 낮을 때. 10분 주기가 최대 연속 증가 추력으로 유지되어야 하는 경우를 제외하고 2분간의 공회전추력이 수반되는 정격이륙 증가 추력에서 10분 주기의 1회
 (iv) 가속과 감속시간을 포함하는 2분간의 공회전추력을 각각 수반하는 정격이륙 증가 추력에서의 1분 주기의 6회
(2) 모의 초음속 시험. 각 모의 초음속 시험의 운전은 아음속 조건에서 얻어진 것으로부터 초음속에서 얻어진 온도와 압력으로 흡입 공기 온도 및 압력을 변경한 후에 수행되어야 한다. 그리고 아음속 조건에서 얻어진 온도로의 회귀가 수반되어야 한다. 아래의 사항으로 이루어진 각 4시간씩 30회의 작동
 (i) 정격최대연속 증가 추력 90% 위치로 출력 제어 레버를 맞추어서 얻어진 추력에서의 10분을 수반하고, 정격최대연속 증가 추력위치로 출력제어레버를 맞추어서 얻어진 추력에서 30분 주기의 1회. 최초 5회의 작동 중 본 주기의 마지막은 천초과온도의 제한조건에서의 흡입공기의 온도로서 행해져야 한다. 그러나 본 절의 (g)(2)(ii)항에서 (iv)항까지 규정된 기간 동안 반복될 필요는 없다.
 (ii) 정격최대연속 증가 추력의 80% 위치에 출력 제어 레버를 맞추어서 얻어진 추력에서의 10분을 수반하는 것을 제외하고, 본 절의 (g)(2)(i)항에 규정된 작동을 반복하는 1회
 (iii) 정격최대연속 증가 추력의 60% 위치에 출력제어레버를 맞추어서 얻어진 추력에서의 10분과 그 후 정격이륙추력의 15% 이하에서의 10분을 수반해야 하는 것을 제외하고, 본 절의 (g)(2)(i)항에 규정된 작동을 반복하는 1회.
(iv) 본 절의 (g)(2)(i)항과 (ii)항에 규정된 작동을 반복하는 1회
(v) 각 공회전추력을 수반하고 정격최대연속 중가 추력 위치에 동력제어 레버를 맞추어 얻어진 추력에서 행해지는 30분 주기 25회 작동과 5분간 가열된 연료를 사용하여 정격이륙추력을 가속시키고, 25분 동안 15% 또는 정격이륙추력을 초과하지 않는 아웃 속 운전을 수반하는 정격최대연속 중가 추력 위치에 출력제어레버를 맞추어 얻어진 추력에서 행해지는 30분 주기의 나머지 5회 작동.
(3) 시동. 100회의 시동이 이루어져야 하며 그 중 25회의 시동은 적어도 2시간 엔진 작동정지가 선 행되어야 한다. 정상적인 시동을 시도하기 이전에 신청자가 규정한 최소연료 배출시간 동안 일시 정지하는 적어도 10회의 엔진 가(假)시동이 있어야 한다. 엔진을 25초 후로 15분 이내에 적어도 10회의 정상적인 제시동이 있어야 한다. 시동은 내구성 시험 기간을 포함하여 연계든지 이루어질 수 있다.

33.88 엔진파열시험
(a) 각 엔진은 정격 30초 OEL 출력 및 정격 2분 OEL 출력과 관련된 rpm과 가스 온도의 최대 값을 배제한 최대 정격의 정상상태 운용한계보다 적어도 42℃ (75°F) 높은 가스 온도로 최대허용 rpm에서 5분간 작동되어야 한다. 본 작동 후에 터빈 조립품은 운용한계 내에 있어야 한다.
(b) 정격 30초 OEL 출력 및 정격 2분 OEL 출력이 요구되고 온도를 제한하는 장치가 설치되어 있지 않은 엔진은 정격 30초 OEL 출력 작동 한계보다 적어도 42℃ (75°F) 높은 가스 온도로 최대 출력 rpm에서 5분간 작동되어야 한다. 감항당국에 의해 필요하다고 판단한 분석이나 시험에 의해 터빈 조립품의 강건성이 유지되었을 입증할 경우 이 작동 이후 터빈 조립품에 파열조건에 대한 한계 이상의 피로가 존재하여도 무방하다.
(c) 정격 30초 OEL 출력과 정격 2분 OEL 출력이 요구되고 온도를 제한하는 장치가 설치되어 있는 각 엔진은 최대 작동 한계보다 적어도 20℃ (35°F) 높은 가스 온도로 최대 출력 rpm에서 4분간 작동되어야 한다. 감항당국에 의해 필요하다고 판단한 분석이나 시험에 의해 터빈 조립품의 강건성이 유지되었을 입증할 경우 이 작동 이후 터빈 조립품에 파열조건에 대한 한계 이상의 피로가 존재하여도 무방하다.
(d) 각 시험 조건에 대해 별개의 시험 엔진을 사용하여도 무방하다.

33.89 작동시험
(a) 작동시험은 감항당국이 아래 사항을 입증하기 위해 필요하다고 판단한 시험을 포함하여야 한다.
(1) 시동, 공회전, 가속, 과속, 점화, 프로펠러의 기능 (만약 엔진이 프로펠러와 함께 작동되도록 고안된 경우)
(2) 33.73항의 엔진 응답 요구사항에 대한 적합성: 그리고
(3) 안정화된 공회전 작동으로부터 시작하여 다음의 하중조건 하에서 최소 공회전과 최소 비행 공회전을 나타내는 출력 레버 위치로부터 95% 정격이륙출력 또는 추력까지의 최소 출력 또는 추력응답 시간
(i) 항공기에 사용을 위한 블리드 공기 및 출력 추출이 없는 경우
(ii) 항공기에 사용을 위한 최대허용 가능 블리드 공기 및 출력 추출
(iii) 착륙을 위한 접근 중에 항공기가 최대로 사용할 수 있는 대표적인 블리드 공기 및 출력 추출 값의 중간치
(4) 시험 시설 이용이 불가능한 경우, 본 절의 (a)(3)(ii)항과 (iii)항에서 요구되는 출력 추출은 적절한 분석 수단을 통하여 결정될 수 있다.

(b) 작동시험은 엔진이 규정된 작동범위 전체에서 안전한 작동특성을 가지고 있음을 입증하기 위해 감청당국이 필요하다고 판단하는 모든 시험을 포함하여야 한다.

33.90 초기 정비검사
기존 형식증명의 개정을 통하여 또는 추가적인 형식증명 절차에 의하여 형식 증명된 엔진을 제외한 각 엔진은 최초의 정비검사가 한계 요구되는 가에 대한 기준을 설립하기 위하여 일반적인 시동-정지 주기를 포함하여 엔진이 운용 중에 겪을 수 있는 조건들을 모의 실험하는 승인된 시험작동을 받아야 한다. 시험 작동은 실제적으로 최종 형식 설계에 실제적으로 적합한 엔진에 대하여 이루어져야 한다.

33.91 엔진 구성품 시험
(a) 33.87의 규정에 따른 내구성 시험에 의해 적절하게 입증될 수 없는 계통의 구성품은 모든 정상적으로 예상되는 비행 및 대기 조건에서 신뢰성 있게 기능할 수 있음을 입증하기 위해 추가적인 시험을 수행하여야 한다.
(b) 작동시험을 통한 안전성 및 설계도 및 내구성을 보장하기 위하여 항공기의 모든 특성의 장착 및 사용의 구성을 포함하여, 엔진구성품의 향후에 향후한계를 설정되어야 한다.
(c) 각 구조적 안전 유무 테크는 최대작동 온도 및 0.35 kg/cm²(5psi)의 내부 압력을 받을 때 파괴나 누유가 일어나지 않아야 하며, 각 구조적 안전 유무 테크는 최대작동 온도 및 테크의 최대작동 압력보다 0.35kg/cm²(5psi) 이상 되는 내부 압력을 받을 때 파괴나 누유가 일어나지 않아야 한다.
(d) 초음속 항공기용으로 형식 증명된 엔진의 경우 최대 및 최소 작동 온도에서 운용으로 장치가 발생할 수 있는 계통, 안전장치 및 외부 구성품은 온도 및 다른 작동조건이 최대와 최소 작동값 사이에서 주기적으로 동작하는 동안과 최대 및 최소 작동 온도에서 확인되고 시험되어야 한다.

33.92 로터 잠김 시험
만약 로터를 고정시키는 장치에 의해 계속적인 로터의 회전이 방지되는 경우 엔진은 다음의 조건에서 이 장치의 작동을 포함하는 시험을 받아야 한다.
(a) 각 안전은 정격최대연속출력 또는 출력으로부터 작동되어야 한다. 그리고 로터를 고정시키고 고정시키는 장치의 이 조건에서 계속적인 비행으로부터 작동될 수 있는 최대 토크를 받으면서 로터의 조작 지침에 규정된 바대로 조작되어야 한다. 그리고 로터가 고정된 후 로터는 각 25회의 작동에 대해 5분 동안 이러한 조건 하에서 정지 상태를 유지해야 한다.

33.93 분해검사
(a) 이 기준의 33.87 (b), (c), (d), (e) 또는 (g)항의 내구성 시험을 마친 후 각 엔진은 완전히 분해되어야 한다. 그리고
(1) 엔진의 장착과 무관하게 설정되어있을 수 있는 조정 상태와 기능상의 특성을 갖는 각 구성품은 시험 초기에 설정, 기록되어진 현재 내에서 각 상태 및 기능상의 특성을 유지하여야 한다. 그리고
(2) 각 엔진 부품은 형식 설계에 적합하여야 하고, 33.4항에 의해 제출된 자료에 따라 엔진의 연속적인 작동에 적합하게 엔진에 장착될 수 있어야 한다.
(b) 33.87(f)항의 내구성 시험이 완료된 이후 각 엔진은 완전히 분해되어야 한다. 그리고
(1) 엔진의 장착무관하게 설정되어질 수 있는 조정 상태와 기능상의 특성을 갖는 각 구성품은 시험 초기에 설정, 기록되어진 한계 내에서 각 상태 및 기능상의 특성을 유지하여야 한다. 그리고
(2) 일부 엔진 부품 또는 구성품이 더 이상 사용할 수 없는, 이 절의 (a)(2)항의 허용치를 초과하는 기능저하가 엔진에 존재하여도 무방하다. 신청자는 감항당국이 필요하다고 판단한 분석 및/또는 시험을 통하여 마운트, 케이스, 머플링 저지대, 측 및 로터를 포함한 엔진의 구조적 안전성과 유지성을 입증하여야 한다.
(c) 정격 30초 OEI 출력 및 정격 2분 OEI 출력이 요구되는 각 엔진은 이 절의 (b)항에 대한 적합성 입증 대신에, 본 기준의 33.87 (b), (c), (d), 또는 (e)항에 따라 내구성 시험을 수행하고 이후 중간 분해 및 검사 없이 33.87(f)항에 대한 시험을 수행하여야 한다. 그러나 33.87(f)항의 내구성 시험을 마친 이후 엔진은 이 절의 (a)항에 적합하여야 한다.

33.94 블레이드 내포 및 로터 불균형 시험
(a) 본 절의 (b)항에 규정한 것을 제외하고, 결과적으로 엔진의 파손이 스스로의 작동 경지를 일으키지 않는다면, 다음의 경우 엔진이 작동 도중 15초 동안, 방화 및 마운팅 연결부의 파괴를 초래하지 않고 파손 부위를 내포할 수 있음을 엔진 시험을 통하여 입증하여야 한다.
(1) 최대허용 회전수에서 작동하는 동안에, 가장 위험한 압축기 또는 펌 블레이드의 파괴. 블레이드의 파괴는 블 외곽의 유지 홈에서 발생해야 하거나 또는 일체형 블레이드의 로터 디스크에 대해서는 적어도 80%의 블레이드가 파괴되어야 한다.
(2) 최대허용 회전수에서 작동하는 동안에, 가장 위험한 터빈 블레이드의 파괴. 블레이드의 파괴는 블 외곽의 유지 홈에서 발생해야 하거나 또는 일체형 블레이드의 로터 디스크에 대해서는 적어도 80%의 블레이드가 파괴되어야 한다. 가장 위험한 터빈 블레이드는 최대허용 회전수에서의 작동과 관련된 케이스의 온도 및 압력을 고려하여 결정되어야 한다.
(b) 리그시험, 구성품시험 또는 운용 경험에 기반을 둔 분석은 반일 아래의 경우라면, 본 절의 (a)(1)항 및 (a)(2)항에 규정된 엔진 시험 중의 하나를 대치할 수 있다. (1) 규정된 두 가지 중 그 시험이 최소 로터 불균형을 초래할 때, 그리고
(2) 분석이 시험과 동일하다고 밝혀졌을 때

33.95 엔진-프로펠러 시스템 시험
만약 엔진이 프로펠러와 함께 작동되도록 설계되어 있는 경우 대표적인 프로펠러를 장착한 상태로 내구성 시험 동안 작동되게 하거나 아니면 감항당국이 승인한 다른 방법으로 다음의 시험을 수행하여야 한다.
(a) 페더링 작동: 25회 주기
(b) 역 토크 및 수력 계통 작동: 정격 최대연속 출력으로부터 25회 주기
(c) 작동 분리작동: 정격최대 연속출력으로부터 25회 주기. (만약 운용 중 반복적인 분리 및 재결합이 장치의 설계된 기능인 경우)
(d) 역추력 작동: 비행 공회전 위치로부터 완전 역추력 위치까지의 175회 주기와 완전 전전 위
치로부터 완전 역추력 위치까지의 정격 최대연속출력에서의 25회 주기. 각 주기의 마지막
단계에서 프로펠러는 신청자가 설정한 역 피치 작동에 대한 최대회전속도 및 출력상태로
30초 동안 역 피치로 작동되어야 한다.

33.96 보조동력장치(APU) 모드에서의 엔진 시험.
엔진이 보조동력장치(APU) 상태로 작동이 가능하하여 프로펠러를 포함한 엔진의 가스 제너레이
터를 제외한 부분들은 정지시키는 프로펠러 제동장치가 구비된 엔진의 경우에는 33.87항의 요
구사항에 추가하여 다음의 시험을 실시하여야 한다.: (a) 지상 참급. 신청자에 의해 설정된 엔진 속도, 토크, 온도, 공기 플레이트 및 출력 추출의 최
대 조건하에서 APU 방식으로 엔진이 작동 중 일 때 엔진에 해로운 영향을 미치지 않고
기능할 수 있음을 명확하게 입증된 방법으로 프로펠러 제동장치를 작동하는 총 45시간
(b) 동적 제동. 신청자에 의해 설정된 엔진의 가속/감속률, 속도, 토크 및 온도의 최대 조건하
에서 엔진에 해로운 영향을 미치지 않고 기능할 수 있음을 명확하게 입증된 방법으로 전
체 400회의 작동-해제 주기의 제동장치 작동이 수행되어야 한다. 프로펠러는 제동장치가
해제되기 전에 정지하여야 한다.
(c) 프로펠러 제동장치가 작동하는 상태로 100회의 엔진 시동 및 정지
(d) 이 절의 (a), (b) 및 (c)항에 의해 요구되는 시험은 동일한 엔진에 수행되어야 하지만 이 엔
진은 33.87항에 의해 요구되는 시험에 사용된 엔진과 동일한 필요는 없다.
(e) 이 절의 (a), (b) 및 (c)항에 의해 요구되는 시험 이후 33.93(a) 및 33.93(b)항의 요구사항에
대한 적합성을 입증하기 위해 필요한 한도까지 엔진을 분해하여야 한다.

33.97 역추력장치
(a) 만일 엔진에 역추력장치가 장착된 경우, 이 절에서 규정하고 있는 내구성 보정, 운전 조작
과 동등 시험은 역추력 장치를 설치한 상태로 수행하여야 한다. 본 항에 따라서 출력제어
레버는 한 극한 위치에서 다른 극한 위치에 움직이는 데 1초 이상이 걸려서는 안 된다.
단 제어 작동의 다른 영역이 출력 제어 레버의 한 극한 위치에서 다른 극한 위치로의 이
동에 있어서 예정된 순서를 필요로 하는 경우, 보다 긴 시간이 허용될 수 있으나 2초를 초
과하지 않아야 한다. 추가로 본 절의 (b)항에 규정된 시험이 수행되어야 한다. 이 테스트는
내구성 시험의 일부로서 수행될 수도 있다.
(b) 비행-공회전 추력에서 최대 역 추력까지의 175회의 추력 반전이 이루어져야 하고 정격 이
록추력에서 최대 역추력까지의 25회의 추력 반전이 이루어져야 한다. 각 추력 반전 이후
역추력장치는 1분 동안 완전 역 추력상태에서 작동되어야 한다. 단 역 추력장치가 지상에
서 제동수단을 위한 것인 경우, 역 추력장치는 30초 동안만 완전 역 추력상태에서 작동하
면 된다.

33.99 블록시험 일반사항
(a) 블록시험을 수행하는 데 있어 각 신청자는 진동, 교정, 내구성, 작동 시험에서 동일한 설계
및 구성의 별개의 엔진을 사용할 수 있다. 단 내구성 시험을 위해 별개의 엔진을 사용함
경우 그 엔진은 내구성 시험 시작 전에 교정 점검을 받아야 한다.
(b) 각 신청자는 33.4항에 따라 제출된 유지 및 정비 지침서에 따라 블록시험 동안 엔진에 대
한 유지보수 및 정비한 수리를 행할 수 있다. 만약 유지보수의 빈도가 과다하거나 또는 엔
진 기능발생에 의한 정지 횟수가 과다하거나 또는 블록시험 동안 또는 분해검사 점검결과

재정: 1993.08.24 33 - 31
중요한 수리 또는 부품의 교체가 필요하다고 판단될 경우 엔진 또는 그 부품들은 감항당국이 필요하다고 판단하는 다른 추가적인 시험을 받아야 한다.

(c) 각 신청자는 블록시험을 수행하기 위한 장비 및 자격 있는 인력을 포함하는 모든 시험설비를 제공하여야 한다.
부록 A 감항성유지지침서

A33.1 일반
(a) 이 부록은 33.4항에서 규정한 감항성유지지침서의 요구조건을 규정하고 있다.
(b) 각 엔진에 대한 감항성유지지침서는 엔진의 부품에 대한 감항성유지지침서를 포함하여 야 한다. 엔진의 부품은 엔진에 대한 감항성유지지침서가 엔진의 부품 제조자에 의해 제공되지 않으면, 엔진에 대한 감항성유지지침서는 엔진의 감항성유지에 필수적인 정보를 포함하여야 한다.
(c) 신청자의 엔진 부품의 제조자가 작성한 감항성유지지침서에 변경사항이 생길 경우 신청자는 이에 대한 배포 계획을 국토교통부장관에게 제출하여야 한다.

A33.2 형식
(a) 감항성유지지침서는 제공되는 자료의 양에 따라 적절한 교범 또는 교범 형식이어야 한다.
(b) 교범 또는 교범 형식은 실용적으로 정비된 것이어야 한다.

A33.3 내용
각 교범 또는 전체 교범의 내용은 영어 또는 한글로 작성하여야 한다. 감항성유지지침서는 다음의 내용 및 조항 중 적절한 항목 및 정보를 포함하여야 한다.
(a) 엔진 정비 교범 또는 조항
 (1) 정비 또는 예방 정비를 위해 필요한 범위까지 엔진의 특정과 자료에 대한 설명을 포함하고 있는 소개 정보.
 (2) 엔진과 그 구성품, 계통 및 설치에 대한 상세한 설명
 (3) 엔진의 개봉, 엔진 포장 고정장치의 제거, 수학점검, 인양, 보기장치에의 연결 등 점검이 필요한 절차를 포함하는 장착지침
 (4) 기본적인 세어 및 엔진 구성품, 계통과 장비가 어떻게 작동하는지를 기술하고 있는 작동 정보, 그리고 제한사항 및 어떤 특정한 절차를 포함하고 있는, 엔진과 부품의 시동, 조작, 시험 및 정지하는 방법을 기술하고 있는 정보.
 (5) 정비 정보는 정비 항목, 링크의 용량, 방장소, 사용되는 유체의 종류, 여러 가지 계통에 적합한 압력, 유압 접촉점의 위치, 사용되는 유압 및 정비에 필요한 장비 등에 관한 세부 내용을 포함하여야 한다.
 (6) 엔진의 각 부품에 대해 어느 시점에 정소하고 검사하고 조정하고 시험하고 기름을 채 주어야 하는 지에 대한 추천과 적절한 마모 허용에 대한 검사 수준과 그러한 기준에 권고되어 지는 작업에 대한 계획 정보. 그러나, 만일 신청자가 항목이 예외적으로 너무나 복잡한 수준이어서 특별한 정비 기술, 시험 장비 또는 전문 기술을 필요로 한다는 것을 입증한다면 신청자는 이를 보고문, 기기 또는 장비 제조업자에게 위탁할 수 있다. 권고하는 분해검사 기간 및 교범의 감항성 관계 부문에 대해 필요한 상호 참조 역시 포함되어야 한다. 추가적으로, 신청자는 엔진의 계속 감항성을 위해 제공할 필요가 있는 검사의 한계 및 횟수를 포함하고 있는 검사 계획을 포함하여야 한다.
 (7) 있을 수 있는 기능 불량과 그 기능 불량을 인지하는 방법과 수리 조치를 기술하고 있는 고장 탐구 정보.
 (8) 엔진과 그 부품들을 제거하고 부품을 교환하는 순서와 방법 및 이 때의 주의사항을 기술
하고 있는 정보. 적합한 지상 취급, 포장, 선적에 대한 지시 또한 포함되어야 한다.
(9) 정비를 위해 필요한 도구 및 장비 목록과 그 사용법
(b) 엔진 분해검사 교범 또는 부문.
(1) 분해검사를 위한 분해 순서와 방법을 포함하고 있는 분해 정보.
(2) 분해검사 동안 사용되는 자재와 도구, 조치 방법 및 주의사항을 포함하는 청소와 검사 지침. 분해 검사의 방법 또한 포함되어야만 한다.
(3) 분해수리검사와 관련된 모든 맞춤 및 틈새에 대한 세부 내용.
(4) 교환 시기를 결정하는데 필요한 정보를 포함하여 마모 또는 규격에서 벗어난 부품과 구성품에 대한 수리 방법에 관한 세부 사항.
(5) 분해 수리 시의 조립 순서와 방법.
(6) 분해 수리 이후의 시험 지침.
(7) 임의의 저장 재한사항을 포함하고 있는 저장에 대한 지침.
(8) 분해 검사시 필요한 도구의 목록

A33.4 감항성 재한사항 부문.
감항성유지지침서는 문서의 나머지 부분과 분리되고 분명히 구별되는 감항성 제한사항이란 제목의 부문을 포함하여야 한다. 이 부문은 각 의무적인 교환 시간, 검사 주기 및 형식증명에 필요한 관련된 절차를 설명하여야 한다. 만약 감항성유지지침서가 여러 문서로 구성되어 있을 경우, 이 항에 의해 요구되는 부문은 주 매뉴얼에 포함되어야만 한다. 이 부문은 눈에 띄는 위치에서 잊기 쉬운 설명을 포함하여야 한다.
"감항성 재한사항 부문은 국토교통부장관이 승인하였으며 대체 프로그램에 대한 승인을 받지 못한 경우에는 항공법에 따른 정비사항을 규정하고 있다."
부록 B. 강우와 우박에 대한 인증 표준 대기 농도

그림 B1, 표 B1, 표 B2, 표 B3과 표 B4는 33.78(a)(2)항의 요구 조건에 따른 인증을 위해 강우와 우박의 대기 농도와 크기 분포를 규정하고 있다. 동상적으로 악재 상태의 물을 분무함으로서 강우 조건을 모의실험하고 열음으로 만들어진 우박을 떨어냄으로서 우박 조건을 모의실험하는 시험 수행 시 부록 B에서 정의된 것 이외의 모양과 크기, 분포 크기를 가진 물방울과 우박의 사용 또는 각 물방울 또는 우박에 대해 단일 크기 또는 모양의 사용은 만약 신청자가 대체물이 시험의 엄격성을 줄이지 않는 것을 입증할 경우 승인될 수 있다.

![비상태 및 강우 도표](image)

그림 B1. 강우와 우박의 장조. 인증 농도는 표 B1과 B2 참조

<table>
<thead>
<tr>
<th>고도(feet)</th>
<th>강우 수분 함유량(RWC) (grams water/meter³ air)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>20.0</td>
</tr>
<tr>
<td>20,000</td>
<td>20.0</td>
</tr>
<tr>
<td>26,300</td>
<td>15.2</td>
</tr>
<tr>
<td>32,700</td>
<td>10.8</td>
</tr>
<tr>
<td>39,300</td>
<td>7.7</td>
</tr>
<tr>
<td>46,000</td>
<td>5.2</td>
</tr>
</tbody>
</table>

표 B1. 인증 표준대기 강우 농도

다른 고도에서의 강우 수분 함유량(Rain Water Content)은 선형 보간법에 의해 결정될 수 있음.

다른 고도에서의 우박 수분 함유량(Hail Water Content)은 선형 보간법에 의해서 결정될 수 있다. 7,300ft 이하 및 29,000ft 이상의 우박은 선형적으로 추론된 자료에 근거하고 있다.

<table>
<thead>
<tr>
<th>고도 (feet)</th>
<th>우박수분 함유량 (HWC) (grams water/meter3 air)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>6.0</td>
</tr>
<tr>
<td>7,300</td>
<td>8.9</td>
</tr>
<tr>
<td>8,500</td>
<td>9.4</td>
</tr>
<tr>
<td>10,000</td>
<td>9.9</td>
</tr>
<tr>
<td>12,000</td>
<td>10.0</td>
</tr>
<tr>
<td>15,000</td>
<td>10.0</td>
</tr>
<tr>
<td>16,000</td>
<td>8.9</td>
</tr>
<tr>
<td>17,700</td>
<td>7.8</td>
</tr>
<tr>
<td>19,300</td>
<td>6.6</td>
</tr>
<tr>
<td>21,500</td>
<td>5.6</td>
</tr>
<tr>
<td>24,300</td>
<td>4.4</td>
</tr>
<tr>
<td>29,000</td>
<td>3.3</td>
</tr>
<tr>
<td>46,000</td>
<td>0.2</td>
</tr>
</tbody>
</table>

표 B2. 인증 표준대기 우박 농도
비 방울 직경 (mm) | 전체 강우 수분 함유량 분포 (%)
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0 - 0.49</td>
<td>0</td>
</tr>
<tr>
<td>0.50 - 0.99</td>
<td>2.25</td>
</tr>
<tr>
<td>1.00 - 1.49</td>
<td>8.75</td>
</tr>
<tr>
<td>1.50 - 1.99</td>
<td>16.25</td>
</tr>
<tr>
<td>2.00 - 2.49</td>
<td>19.00</td>
</tr>
<tr>
<td>2.50 - 2.99</td>
<td>17.75</td>
</tr>
<tr>
<td>3.00 - 3.49</td>
<td>13.50</td>
</tr>
<tr>
<td>3.50 - 3.99</td>
<td>9.50</td>
</tr>
<tr>
<td>4.00 - 4.49</td>
<td>6.00</td>
</tr>
<tr>
<td>4.50 - 4.99</td>
<td>3.00</td>
</tr>
<tr>
<td>5.50 - 5.99</td>
<td>1.25</td>
</tr>
<tr>
<td>6.00 - 6.49</td>
<td>0.50</td>
</tr>
<tr>
<td>6.50 - 7.00</td>
<td>0.25</td>
</tr>
<tr>
<td>Total</td>
<td>100.00</td>
</tr>
</tbody>
</table>

표 B3. 중중 강우 방울 직경 분포

중간 강우 방울 직경은 2.66 mm이다.

우박 직경 (mm)	전체 우박 수분 함유량 분포 (%)
0 - 4.9 | 0
5.0 - 9.9 | 17.00
10.0 - 14.9 | 25.00
15.0 - 19.9 | 22.50
20.0 - 24.9 | 16.00
25.0 - 29.9 | 9.75
30.0 - 34.9 | 4.75
35.0 - 39.9 | 2.50
40.0 - 44.9 | 1.50
45.0 - 49.9 | 0.75
50.0 - 55.0 | 0.25
Total | 100.00

표 B4. 인증 표준 대기 우박 크기 분포

우박의 중간 직경은 16 mm이다